NEDTE-PORT-GUIDE-1.2.1 , 28 December 2009

Joint Tactical Radio System
Network Enterprise Domain
Test & Evaluation

Waveform Portability Guidelines

VERSION 1.2.1
28 December 2009

" Network
Enterprise
Domain

Prepared for:

Joint Tactical Radio System Network Enterprise Domain
33000 Nixie Way, San Diego, CA 92147

Prepared by:

Network Enterprise Domain Test & Evaluation
Space and Naval Warfare Systems Center Atlantic
P.O. Box 190022, North Charleston, SC 29419-9022

Distribution A: Approved for public release; distribution is unlimited,

JAN 112010

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Signatures of Concurrence

A2 ()

Mr. Richard Anderson - NED T&E Program Manager

Dmm (\Joﬁd‘ﬂm

Mir. Dean Nathans — NED Chief Engineer

p

%,'(%(PT J 'effery W, Hoyle — NED Program Manager

Waveform Portability Guidelines i

Changes necessary for public release

NEDTE-PORT-GUIDE-1.2.1 28 December 2009
Change History
Status / Version | Date Modified Author Reason for Change
V10 30 April 2007 Lane Anderson | First release
V11 26 June 2008 Lane Anderson | Includes feedback from industry, input deferred from
V1.0, and more lessons leamed
V1.2 28 December 2009 Lane Anderson | Periodic updates
V1.2 28 December 2009 Lane Anderson

Waveform Portability Guidelines

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Table of Contents

1 INtroduction ... nssisii——————— eeseemreracrserasmeessarenessmssnsarn seavacesers 1
1.1 NoteS ... tiermreareneearar e s T s aensneas SR J—

1.2 Backgroundocceecerce e e ceneenees e araataansanssasamSeaSERSEEakemseaksransrassmsamsmRessansenssmmsmes 1

1.21 Guidelines Development............... w2

1.2.2 Portability versus Optimality.....ccrrmmmmmimsrmmmmmmsmnm 2

1.2.3 Portability Assessment Role in the Acquisition Process............ 2

1.2.4 Portability Assessment ObJectivecccvrvnnonrsssmsssnensinessens 3

1.2.5 Portability Measurement Overviewcccoceessnvcueree 3

13 Organizational Chain eesrammesremensseesrensammsreseensssesessemeessemsssssessmssesameses 4

14 Target Audiences and Document USage...........c.ce e nmimisssnssciss st s ssmsan s ssmansanss 4

2 Referenced or Related Bocumentscummnnsennes —
3 Development GUILENNES ... s s sns sescnmcemssmes emssans semmemesmssasas semssamsasas s ams semssms e 9
3.1 General Development Guidelines soutnestesoustessessnestersanentes s o s e snasasernesan 9

311 Consideration of Intended Use of the Waveform........................ 11

31.2 Use of Third-Party Softwarec.crmsrmensrerrerssssrsessarsen 1

313 Development Tools and Debug Code ... cevem v sevcrserssesansnnnns 11

314 T To 1= 1] o T 12

3.1.4.41 PIM/PSM Medeling and Transformationcccoeeriecnnceeans 12

3.1.4.2 Signal Processing Code Modeling................ . . .12

3143 GPP Code Modeling......oviivioniiiieicnseienssesssissesssesssssssssseserss 13

315 Waveform Architecture......... 13

3.1.6 Inline Documentationccoccev v 15

3.2 C/C++ Programming PractiCes........ooiiecmemnsrcsccssssassmssssnesasscsnens 16

33 GPP Guidelines......cceccveruvesrevsrercrons ; w19

3.341 GPP Performance erameaarans ses smraas ses ara ara nes searan 19

3.3.2 POSIX Compliance.........eruseessearseansnaes .19

333 Use of JPEOQ Standard APISccveereiicinmncssesnnicssensansssssmssssssnsns 19

334 Device Interface Abstractions 19

34 DSP GUIAEIINGScemr e emcesrrracacssemsmessscsmess smeses sesssmessos senmssacsmess snssss sessemmn sas smssms sessnmeses 20

35 FPGA GUIEIINES ...ccvrncrrrmsirinsssmssnesmsnmsesssssmmssnsssnssmnssmsnsnenssnensssesssssnssssanssesaassssnss 21

3.6 Domain Profile Guidelines ... e .23

3.7 Documentation Guidelines ... remnennsreeneas w23

371 Waveform Design Specificationccccvrvreeccessevesrssencenesnnccans 24

372 Software Requirements Specificationvocivieens 24

3.73 Software Design Description i 25

3.74 Interface Design DesScriptionS. ... sssssssses 27

375 Software Version Descrption ... csinss s inssmnssss 27

3.7.6 Waveform Porting Plan 28

3.7.7 Waveform Porting Report ... scccrecssmssmcsssessmssmcsmsasas 28

4 Portability Assessment Background et b bR R R 30

Waveform Portability Guidelines i

NEDTE-PORT-GUIDE-1.2.1

28 December 2009

41 Portability QUAlItIESucnniieiciiisisiniicni s s s s s nssiassnssss s srasensrane 30

4.2 Assessment Methodology ... mrsnmssrensinsssni e s o see sassse o smeessaseesaasess ky |

4.2.1 Laboratory Analysis.....c.crcsmencnmsssinssssisanes H

4.2.2 Waveform Porting ...t s nesssas e naen 32

423 Static Assessment.................. .32

4.3 Assessment RESUIRS ... ceiercvnsrerssssersaresnsares 32

Appendix A Acronym Listcrmimenmnensmnsnnmnmsmesism s s - A

Appendix B Specific TErMINOIOGY w..co e s st s nstsaesens seasasss sessssans seress smsmsasasmesnsass B-1

Appendix C Acquisition Guidelines.......cccce oo cvcrcen e e cenee .. C-1

Appendix D 1T L= 11T O SO D-1

Figures and Tables

Figure 1-1. Waveform Timeline, Part 1 7 5
Figure 1-2. Waveform Timeline, Part 2

Figure 3-1. Example of Platform Abstraction 20

Table 3-1. Portable C/C++ Language Features 16

Table 3-2. Non-Portable C/C++ Language Features 17

30

Table 4-1. Portability Quality Rationale

Waveform Portability Guidelines

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

1 Introduction

The Joint Tactical Radio System (JTRS) Network Enterprise Domain Test and Evaluation (NED T&E)
organization will conduct waveform portability assessments on all FTRS waveforms and other waveforms
intended for hosting on JTRS radio platforms. All waveform portability assessments will follow the
procedures defined in the NED T&E Waveform Portability Assessment Procedures (WPAP) [1], which are
derived from the guidelines in this document, This document describes the practices that both the
Government and waveform developer should follow to ensure that the delivered waveform exhibits the
maximum portability achievable within the required performance parameters of that waveform.

1.1 Notes

¢ Throughout this document, the term “the Government” indicates United States Government
personnel and its designated representatives.

® Several places in this document contain the phrase “as practical” or “if practical.” In such cases,
the Government will determine what is practical.

e Throughout this document, the term “software” includes C/C--+, other high-level languages, such
as JAVA, Interface Definition Language (IDL), assembly language, and Hardware Definition
Language (HDL). The reader should be aware that HDL “sofiware” requires such things as static
timing analysis, interface diagrams, etc., that other software does not.

» The portability assessments assume that each waveform has at least one target platform identified
for it by the Joint Program Executive Office (JPEO) or the NED. If no such target has been
identified, the Portability Assessment Team (PAT) will select one for its assessments.

1.2 Background

The JTRS Charter [2] lists portability as a JTRS Program objective, and the JTRS Operational
Requirements Document (ORD) [3] defines the term waveform as follows: “A waveform: is the
representation of a signal as a plot of amplitude versus time. In general usage, the term waveform refers to
a known set of characteristics, e.g. SINCGARS or EPLRS "waveforms.” In JIR System usage, the term
waveform is used to describe the entire set of radio functions that occur from the user input to the RF
[Radio Frequency] owiput and vice versa. A JTR System "waveform" is implemented as a re-useable,
portable, executable sofiware application that is independent of the JTR System operating system,
middleware, and hardware.”

JIRS is unique among Department of Defense (DoD) acquisition programs in establishing the
programmatic goal of procuring waveform application software in a form that can be ported (rehosted or
transferred) to different Joint Tactical Radio (JTR) platforms at a cost considerably lower than that for new
development. The portability of the waveform software across multiple JTR platforms is necessary for the
JTRS Program to achieve the following goals:

s Reduced cost through maximized reuse of waveform software across multiple platforms
e Faster insertion of new technologies

+ Interoperability of radio systems between services

e Reduced training requirements due to commonality of platforms

All new JTRS waveform acquisition contracts shall require developers to follow the guidelines set forth in
this document to the maximum extent practical while maintaining the performance requirements of the

Waveform Portability Guidelines 1

NEDTE-PORT-GUIDE-1.2.1 28 Becember 2009

waveform. The Government does not intend this to be a burden to the developer, but rather an aid to
successful ports of the waveform to the designated target platforms. This document details guidelines that
should be a part of the natural development process for software and documentation necessary to enable
portability success.

Unlike previous DoD software acquisitions, the product is not solely an executable binary; instead, it is a set
of source files proven to operate according to a set of performance and functional requirements in a
specified environment or set of environments. Further, as the Government or its representatives has the
responsibility for fielding the waveform on one or more JTRS radios, the waveform design and
implementation documentation, including models, is considered as important to the success of the program
as the software itself. The documentation and models assume this degree of importance because one of the
ultimate goals of JTTRS portability is to enable a third-party organization to port or extend/enhance a
waveform without support from the original developer. Beyond just capturing the design of the waveform,
these documentation and modeling artifacts must also capture the motivations. This will allow the
Waveform Integrator (WI) to understand the rationale behind certain engineering decisions, and how those
decisions might need reconsideration for optimizing the waveform for operation on differing platforms.

Together, the source code, design documents, and models enable the Govemment’s assessment process,
which determines the gap between the requirement for waveform portability and the waveform developer’s
design and implementation,

1.21 Guidelines Development

The information in this document is a composite based upon the practical experiences of the NED T&E
organization, other contributors to this document — both from inside and outside of the JTRS Program, and
highly regarded industry references.

1.2.2 Portability versus Optimality

The two concepts of portability and optimality are both very important to the success of Software Defined
Radio (SDR) programs such as JTRS, but they can ofien be in opposition to one another. Portability calls
for the most generic application possible, so that it can move from one environment to another with
minimal changes. Conversely, optimality calls for an application tailored to a specific platform in order to
maximize efficiency and performance. Satisfying all of the requirements for the waveform requires that the
developer reach a compromise between these two concepts. The JTRS program will target each waveform
at a subset of the specified platforms, and the waveforms should be developed specifically for those
characteristics that are common to all of their target platforms. The waveform design must be generic
enough so that those characteristics that differ among target platforms do not present an unacceptable
hindrance to porting between them. During the ports, the combined waveform and platform can be
optimized to the degree necessary for best performance.

1.2.3 Portability Assessment Role in the Acquisition Process

The PAT exists to ensure that waveforms acquired by the Government fulfill the necessary portability
objectives for the overall success of the JTRS Program. For the PAT to provide the maximum assurance of
this success, it is important that the team be involved at the beginning of the acquisition process. In doing
so, the PAT can:

* Provide the Acquisition Lead with guidance regarding the content of the Request For Proposal
(RFP) and Statement of Work (SOW).

» Actasaresource to the waveform developer by providing:

0 A clear understanding of the portability constraints for the waveform under development

Waveform Portability Guidelines 2

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

o Help in understanding the characteristics of the platforms on which the waveform will be
hosted

e Work with the waveform developer during the design and development phases to ensure the early
identification and avoidance of potential barriers to portability.

To perfonm these services, the PAT must consist of a collection of skilled engineers whose cumulative
knowledge and experience covers the tools and techniques required for waveform development and porting,
as well as a thorough knowledge of the intended target platforms. Refer to Appendix C for more details on
the composition of the PAT.

Some waveform acquisitions have already progressed beyond the point at which the PAT can provide
maximum benefit. For these programs, this document can still add value by serving as guidance for those
phases of the acquisition that have not yet occurred. The Government will address any contractual issues
associated with the application of these guidelines separately for each waveform.

Waveform developers must understand that the burden of proof is on them. The Government has
contracted them to develop a portable waveform, and they must present a compelling case that they have
done so with the implementation and documentation.

1.24 Portability Assessment Objective

The objective of the portability assessment process is to evaluate waveform portability by measuring
whether the waveform under investigation can be made to load, instantiate, and execute correctly in the
specified target JTR set environment(s) with minimal changes. The waveform portability assessment is
based upon qualitative and quantitative measures of the waveform design and implementation in a specific
software and hardware environment context for determining:

e The degree to which the integrated product (ported waveform, software infrastructure, and
hardware) fulfills the stated requirements

e The ease and degree by which the waveform software, HDL, interfaces, etc., developed for correct
execution in one JTRS environment will execute properly within another, different JTRS
environment after porting for less than the total cost to redevelop the waveform

The assessment criteria, contexts, and processes enable the above measurements and allow the PAT to
assess the waveform’s ability to port to all target platforms. This process requires that the PAT assess the
qualities of the waveform detailed in Section 4, Table 4-1.

The paragraphs above state several times that the issue addressed here is portability in the context of the
JTRS Program. The intent of these guidelines is to aid in the development and acquisition of JTRS
waveforms that port successfully to platforms identified by the U.S. Government and its allies, although
these guidelines will benefit any SDR program where portability is desired. Due to the focus on SDR in
general, and JTRS in particular, it is possible that some of the gnidelines contained herein will run counter
to general software portability concepts. That said, the PAT will note any potential barriers to the broader
definition of portability (i.e., outside of the restrictions of the JTRS program) that it identifies during an
assessment. Such notes may provide value if the waveform is'later ported to a platform that differs from
those identified during the original waveform development program. The PAT will guide the development
of JTRS waveforms toward general portability where it does not adversely affect JTRS program costs,
functionality, or performance.

125 Portability Measurement Overview

The PAT measures waveform portability in accordance with the WPAP [1]. This assessment is a
combination of laboratory analysis of the software components and static analysis of the waveform source

Waveform Portability Guidelines 3

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

code and documentation. It also includes porting some or all waveform components to a target platform.
Section 4.2 includes a more detailed overview of these activities.

1.3 Organizational Chain

The Iead office for the JTRS Program is the JPEO JTRS. The NED Program Management Office (PMO)
acquires JTRS waveforms and network enterprise services for the JPEO JTRS Enterprise. NED T&E is
NED’s test and evaluation arm responsible for assessing waveform portability and performance. Within
NED, NED T&E reports to the NED Chief Engineer.

14 Target Audiences and Document Usage
This document targets several distinct audiences:

s The Government program office in charge of the waveform acquisition should use this docurment
for:

o Guidance regarding how portability-related aspects of the acquisition process are managed
from start to finish, increasing the likelihood that the final delivered waveform is portable

o Adherence to the contract guidelines to ensure that the Government and the waveform
developer both produce the quality artifacts necessary to achieve the stated goal of portability

e The waveform developer should use this document for detailed information on:
o Design concepts and practices that promote development of a portable waveform application

o Programming practices that will enhance the portability of the developed sofiware, thus
enabling the port to a target platform by a future WI

¢ Documentation and models required to provide a future WI with sufficient information to
understand the waveform structure and functionality well enough to port it

o Documentation and models that provide the W] and the PAT with the rationale behind
engineering decisions

o Documentation and models required to provide the PAT with sufficient information to perform
the portability assessment

o Anunderstanding of the process used by the Government to assess portability.

» The PAT uses this document as the source reference on waveform portability criteria used in the
waveform assessment process. The procedures described in the WPAP [1] derive from the
guidelines in this document.

e The WI uses this document to provide a guide to the available information and assessment criteria
on the waveform that they have been contracted to port.

Figure 1-1 and Figure 1-2 illustrate a notional timeline for the waveform acquisition activities related to
portability and its assessment, highlighting in red (white text on dark background for black and white
printout) those steps in which the formal procedures described in this document take place. Those activities
on the NED T&E timeline that are not in red still involve NED T&E participation and evaluation of
waveform design for portability. In those cases, NED T&E participates to provide guidance to the
developer through participation in design reviews, review of portability related deliverable documentation,
and interim code drop assessments. A final assessment is made of the Formal Qualification Testing (FQT)
drop and is placed in the JPEO Information Repository (IR) as guidance for the W1, Note that the
Development Phase will usually result in multiple drops of waveform software to the Government. This

Waveform Portability Guidelines ‘ 4

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

will allow for multiple reviews of code at several stages in the development process, allowing any issues to
be addressed much earlier than if only the final completed waveform is assessed. Some variances in this
timeline are to be expected from one waveform acquisition to another.

Note: These figures do not include subsequent ports of the waveform to platforms for use in the field.

The following acronyms are marked with an asterisk (*) in the figures as there is not adequate space to
expand them there: SRR — Software Requirements Review, PDR — Preliminary Design Review, CDR —
Critical Design Review, TRR — Test Readiness Review, FQT — Formal Qualification Testing, PRR —
Porting Readiness Review, and PPVT — Post-Port Verification Test.

‘Waveform Developme_nf and Assessment Timeline — Part 1

Tima - b/‘ ‘This phase may have multipla cycles l\b
o Croalo RAPfor | | Seteat Define

LI tor quil CDR*

= mainlenance davalopar (3.7.1,3.7.2)

i Contribute

i techmical Defina termrin Suboi

a experise o raquiraments findings

m RFP and {3.7.1,3.7.2}

=z contract

Contract Phasa Requirements Phase Design Phase Implamentation Phase

Figure 1-1. Waveform Timeline, Part 1

Waveform Pertability Guidelines 5

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Waveform Development and Assessment Timeline — Part 2

Time Jow-
DPTIDNAL
Deteming
. ECAl Review whether 12
TRR" Fat* PRR* POA® inal submit
raporis wavaform lo
IR

OPTIONAL
% Submit
e TRR*| |FaT* PRR* PRVT" ggx‘_ Gr:":';’"’ final
@ P raparts

DPTIORAL

DPTIONAL
-

Tesl Phane Farting Phaas Wrap-up Phasa

Figure 1-2. Waveform Timeline, Part 2

Waveform Portability Guidelines 6

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

2 Referenced or Related Documents

This section lists all documents related to the creation, u.nderstandmg, and use of this document. Subsequent
revisions of these documents will apply.

f1] JTRS NED T&E Waveform Portability Assessment Procedures, Version 1.1 DRAFT, 24 June
2008.

[2] JPEO JTRS Charter, 14 October, 2005.

[3] Joint Tactical Radio System (JTRS) Operational Requirements Document, Version 3.2.1, 28
August 2006,

[4] Joint Tactical Radio Systern (JTRS) Standards, Joint Program Executive Office (JPEO) JTRS
Software Communications Architecture Specification, Version 2.2.2, 15 May 2006.

[5] Joint Tactical Radio System (JTRS) Standard Modem Hardware Abstraction Layer (MHAL)
Application Program Interface (APT), Version 2.12, 27 August 2009.

[6] Joint Tactical Radio System (JTRS) Standard MHAL On Chip Bus Application Program Interface
(APT), Version 1.0.4, 27 August 2009,

[7] JPEO JTRS Standards Standardization Plan, Version 1.9.1, 3 June 2009.
[8] JTRS JPEO Software Standards, Version 1.2, 23 May 2007.
[9] Stroustrup, Bjarne. The C++ Programming Language, Addison-Wesley, 2000.

[10]International Standard ISO/TEC 14882:2003(E), Second edition, Programming languages — C++,
American National Standards Institute, 2003.

[11]International Standard ISO/IEC 9899:1999, Second edition, Programming languages — C,
American National Standards Institute, 1999.

[12]Object Management Group (OMG) C++ Language Mapping Specification, Version 1.1, June
2003.

[13]Object Management Group (OMG) C Language Mapping Specification, June 1999.

[14]TEEE 1076-2002, Standard VHDL Language Reference Manual, Institute of Electrical and
Electronic Engineers, Piscataway, NJ, 2002.

[15]IEEE 1164-1993 Standard Multi-value Logic System for VHDL Mode! Interoperability, Institute
of Electrical and Electronic Engineers, Piscataway, NJ, 1993,

[16]Cohen, Ben. VHDL Coding Styles and Methodologies, 2 Edition, Kluwer Academic Pub. 1999.
[17]NEDTE-WDS-DID-V1.0, Waveform Design Specification (WDS), 27 October 2009.
[18]NEDTE-SRS-DID-V0.1 DRAFT, Software Requirements Specification (SRS).
[19]NEDTE-SDD-DID-V0.1 DRAFT, Software Design Description (SDD).
[20]NEDTE-IDD-DID-V1.0, Interface Design Description (IDD), 7 April 2009.
[21]NEDTE-SVD-DID-V0.1 DRAFT, Software Version Description (SVD).
[22]NEDTE-WPP-DID-V1.0, Waveform Porting Plan (WPP), V1.0, 13 January 2009.
[23]NEDTE-WPR-DID-V 1.0, Waveform Porting Report (WPR), v1.0, 31 August 2009.
[24]NEDTE-SPS-DID-V0.1 DRAFT, Software Product Specification (SPS).

Waveform Portability Guidelines 7

NEDTE-PORT-GUIDE-{.2.1 28 December 2009

[25]NEDTE-SOW-DID-V0.1 DRAFT, Statement of Work (SOW).

[26]Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[27]Fowler, Martin. Refactoring: Improving the Design of Existing Code, Addison Wesley Longman,
Inc., 1999.

[28]Riel, Arthur J. Object-Oriented Design Heuristics, Addison-Wesley, 1996,

Waveform Portability Guidelines 8

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

3 Development Guidelines

As discussed in the Background section (1.2) of this document, the end product of a JTRS waveform
development program is not a binary software application. The end product is a waveform consisting of a
set of source files that can be hosted on a number of different platforms and supporting documentation
necessary to enable a third-party entity to port and optimize the waveform for a specified platform. The
documentation provided by the waveform developer assumes virtually equal importance to the overall
success of the program as the software itself. This section provides guidance for waveform software
development, as well as the supporting documentation.

Note: AllJTRS waveforms must comply with the documents listed below. In the event of a conflict
between one of the listed documents and these guidelines, the listed document will usually have
precedence. The Government will determine any cases in which this document has precedence.

1. JTRS ORD (3] - The Operational Requirements Document. This describes the overall
requirements that the JTRS program is expected to implement.

2. SCA Specification [4] — The Software Communications Architecture specification for the basic
architecture used in all JTRS radios and waveforms. '

3. JTRS MHAL Standard [5] — The JTRS Modern Hardware Abstraction Layer (MHAL) standard
describing the interfaces between specialized hardware components [e.g., Digital Signal Processors
(DSPs) and Field Programmable Gate Arrays (FPGASs)] used in JTRS radios and waveforms.

4. JTRS MHAL On Chip Bus Application Program Interface (APT) [6] — An extension to the MHAL
interface that describes a parallel interface between specialized hardware components (e.g., DSPs
and FPGAs) used in JTRS radios and waveforms.

5. JPEO JTRS Standards Standardization Plan [7] — The JTRS program-wide plan for standardizing
commonly used APIs between JTRS waveforms and radios.

6. JTRS JPEO Software Standards [8] — JTRS Test and Evaluation Laboratory (JTEL) standards for
coding, documentation, and code delivery.

3.1 General Development Guidelines

Waveform developers should adhere to the following general development guidelines for waveform
portability. Exceptions must be identified to the Government staff and the PAT prior to delivery of the
PDR.

L. Logically subdivide the waveform into components that have well-defined interfaces between
them. This design practice will facilitate hosting of these components on different Computational
Element (CE) types [General Purpose Processor (GPP), DSP, or FPGA] and will support changing
the type of element hosting a given component if necessary for porting to a new platform. These
are multi-processor applications and should not have components tightly coupled to one another
unless necessary to fulfiil performance requirements. In such an instance, the developer must
provide justification for any tightly coupled components.

2. In general, having one component, as defined in Section 3.1.5, per CE (e.g., one red GPP
component, one black GPP component, one DSP component) is not an acceptable level of
modularity in design unless the waveform is extraordinarily simple.

3. Provide as much unit test material (test vectors, documentation, etc.) as practical, along with high-
level math models for any code related to signal processing. This is not a requirement for
additional development, but for delivery of such materials already created and utilized by the

Waveform Portability Guidelines 9

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

developers. Where possible, test vectors should be capable of being used to exercise individual
waveform components in stand-alone form as an aid in unit testing.

4. Standards compliance is a necessity. The contract will identify the particular standards that apply
to a given waveform. These standards will include compliance to the SCA and the JPEO API
standards as verified by the JTEL test procedures.

5. Design the waveform so that, whenever practical, it has no requirements for Radio Services that are
not available on all identified target platforms. If such a Radio Service is necessary, the service
must be delivered as part of the original waveform and must follow the portability guidelines in
this document. The new service must also be registered along with the associated API with the
JTRS standards body.

6. Do not use contractor-developed tools or libraries unless provided to the Government with
Government Purpose Rights (GPR) licenses, for inclusion into the IR along with the waveform.
These items cannot have proprietary markings. This guideline should not be construed as
prohibiting build scripts, which are necessary for the development process and which are
considered a deliverable part of the waveform.

7. Ifsource code generating tools are used, provide the generated source for evaluation, as if the
waveform developer wrote it manually. Automatically generated code must be documented and
models/artifacts provided along with the waveform source such that the WI can port it. The code-
generating tool must also be commercially available for use by the WI. Note: This does not
include Common Object Request Broker Architecture (CORBA) stubs and skeletons generated by
an IDL compiler. Note: In this context, “model” refers to a formal model than can be processed
by a commercially available modeling tool such as Prismtech Spectra or Zeligsoft Component
Enabler.

8. Code and documentation must agree with respect to the details of waveform design and
implementation.

9. Avoid basing the waveform design on strict timing expectations that could vary between platforms.
The developer should document the rationale in the Software Design Description (SDD) if unable
to conform to this guideline.

10. Establish performance characteristics (threshold and objective) for individual components to aid in
understanding rehosting on different CEs. Include these characteristics in the delivered
documentation,

11. Develop naming conventions for variables, functions, classes, and other software constructs, and
use them consistently. Provide documentation on these notations — preferably in the Software
Development Plan (SDP).

12. Use file naming conventions that comply with the rules set forth in the JTRS JPEO Software
Standards [8]. Provide documentation on these notations — also preferably in the SDP.

13. Ensure proper memory partitioning and identify the contents of each partition. This is necessary
for documentation of the waveform structure.

14. Build in as much debug capability as practical. When possible, this should be in the form of SCA
logging as such code is SCA-compliant and should be designed and implemented so that it can be
turned on and off, as needed. Log entries should include identification of the source file and line
number whenever possible. In such cases where SCA logging is not practical, temporary debug
code can be added. Include loopback capabilities to enable individual component testing. Debug
code must either be removed prior to delivery to the Government or designed so that it can be
removed from the executable using conditional compilation. If the code is removed altogether, the
instrumented source should also be delivered to the Government for analysis.

Waveform Portability Guidelines 10

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

311 Consideration of Intended Use of the Waveform

Above all else, the waveform must fulfill the capabilities for which it was developed. Under some
circumstances, doing so will require compromises in portability, but that is preferable to a waveform that
cannot be hosted on those platforms most suitable for its application. The JTRS goal of portability should
always be considered during development, but sorme waveform design decisions may necessarily limit
portability for reasons of performance, power limitations, etc. An example of this would be designing a
waveform intended to function for an extended period on an internal battery power supply. Developers of
such a waveform would need to be cognizant of the power consumption characteristics of the CEs available
to thern, and should allocate functionality accordingly. In this example, they might choose to allocate large
parts of the waveform to a DSP. While a DSP-based design might be less portable in an absolute sense, the
ability to port to the intended target platforms and fulfill the purpose of its development is improved.

31.2 Use of Third-Party Software

Use of third-party software, including freeware and shareware, is a common development practice that
often returns benefits in schedule, cost, and functionality; however, these benefits can come at a cost of
reduced portability. Many third-party software packages targeted for GPPs and DSPs deliver as object
libraries that are linked in when building the executable. This makes it difficult, if not impossible to port the
third-party components to other platforms. The main reason for this difficulty is the lack of visibility into
the library implementation. Without the library source code, there is no way to verify the adherence to
portability-enhancing programming practices. There is also no way to verify the compliance with
applicable standards such as the SCA [4]. Finally, third-party software delivered as object code is always
built for a specific processor, and usually built for a specific operating system, either of which is a
significant barrier to portability. If the third-party software is available as source code, many of these
objections may be put aside. The word “may” applies because the PAT will evaluate that source as if it
were part of the waveform-specific source code.

Third-party code targeted at FPGAs is usually in the form of Intellectual Property (IP) cores provided by the
component vendor. These will rarely work on different FPGA components and are discouraged for that
reason. The same objections apply for third-party software not available as source code for the GPP and
DSP components.

Another form of third-party software is legacy waveform code contained within an SCA-compliant
wrapper. While such code may provide the necessary functionality, it is rarely optimized for the target
platform(s) and can often contain barriers to portability.

The Government understands that there will be occasions where the benefits for inclusion of third-party
software outweigh the disadvantages discussed herein. In such instances, the waveform developer must
contact the PAT to discuss the exceptional circumstances that they feel make the use of such third-party
software necessary. The PAT will evaluate the technical decisions and work with the waveform developer
to choose the best option. Should the PAT and the developer agree to the inclusion of third-party software,
the waveform documentation [Waveform Design Specification (WDS), SDDs, Interface Design
Descriptions (IDDs), or Waveform Porting Plans (WPPs), as appropriate] must include a discussion of any
portability issues related to the use of such software on the target platforms identified for this waveform.

313 Development Tools and Debug Code

The waveform developer shall provide a fully documented build process along with the identification and
configuration of the development tools in the SDP. This permits reproduction of the executable during the
assessment process and porting activities. This applies to all types of CEs.

In addition to all source code, the developer shall ensure that all debug code harnesses, project files, test
benches, and simulations are included in the delivered software. These items are not part of the waveform
source, but are valuable, and in some cases necessary, tools in the development and integrations precesses.

Waveform Portability Guidelines gl

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

314 Modeling

Commercially available software modeling systemns exist to develop some or all of the waveform in a
Platform Independent Model (PIM} for conversion to a Platform Specific Model (PSM). The value of tools
such as MatLab and SimuLink when developing and porting the signal processing software has been
widely recognized, and has become commonplace. For other aspects of the development process, the use
of modeling tools varies between organizations.

The usual method of using such tools is to generate prototypes of the mathematical models of the signal
processing algorithms and test them to ensure that the model produces the desired output under a variety of
conditions, The developer then uses the model as a basis for the actual software and/or HDL. Some of the
tools can generaie the source code for the GPP (in C++), the DSP (in C), or the FPGA in [Very High Speed
Integrated Circuit (VHSIC) Hardware Description Language (VHDL)]. Should the waveform developer
use modeling tools to generate source, they should ensure that the source code conforms to the standard
conventions of the appropriate language and must be compliant with the guidelines and standards outlined
in this document.

Appendix D includes a more in-depth discussion of modeling techniques, tools, and standards.

3.1.41 PIM/PSM Modeling and Transformation

Designing a wavefornm as a PIM allows the developer to create a generic model that captures the necessary
waveform finctionality in a manner completely independent of the actual implementation of the radio. The
available tools for transformation of a PIM into a PSM should create a working model for the chosen target
platform without requiring changes to the original PIM. The reality is that there are only a few such tools
available, and none of them can perform the entire transformation into a fully functional waveform
optimized for the platform for which it is targeted. In addition, industry has not yet widely embraced the
use of these tools in this manner. Still, the creation of a generic PIM as a part of waveform design and
impiementation has a great deal of value, even now, as a means of expressing the functionality of the
waveform in a manner that another engineering team can easily grasp. The PIM also provides an insight
into the motivations of the waveform designers. If the W1 or the PAT has access to appropriate modeling
tools, the PIM can be used to model waveform behavior, and can also be transformed into a representative
PSM. The transformation process is where the waveform can be optimized for the target platform.,

3.1.4.2 Signal Processing Code Modeling

The prototyping aspect of models is helpful in providing an understanding of the signal processing
operation of the waveform. This understanding is valuable to the assessment team, as weil astoa WI. As
stated in the previous paragraph, the PIM provides a view of the structure of the waveform, as well as an
insight into the motivations of the designers. The PSM provides a functioning view of the waveform on the
development platform, but to be truly valuable, it must match the implementation in a bit-exact manner—
that is, they must produce exactly the same output for the same input. This allows the WI, as well as the
PAT to compare the performance of the ported waveform to the original reference model, isolating any
inaccuracies induced during the port. Note that the developer shall deliver the models to the Government
with the design documentation that includes detailed descriptions of the models and tools, This
documentation shall also include the specific versions and configurations of the tools.

The developer should use simulation tools to perform system simulation at multiple levels. The simulations
should include the test methodology, test benches, test vectors, verifiers, report generators, math models,
and any other test material used. The developer should perform these tests and simulations at boundary
conditions, as well as under normal operation, and should provide the Government with documentation of
these simulation runs.

Some general guidelines describing what the waveform developer should include in models supplied to the
Government are listed below.

Waveform Partability Guidelines 12

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

1. The high-level math models of the signal processing software should agree with the delivered
waveform implementation in a bit-exact manner (i.¢., test vectors injected into both the delivered
software and the model must yield the same output vector).

2. The waveform developer should provide as much unit test material (test vectors, documentation,
etc.) as practical so that the PAT can execute the models and compare the output to that from the
code.

3. FPGA simulations should include the test methodology, test benches, test vector stimulus files,
verifiers, report generators, math models, and any other test material used. If these simulations are
generated using elements that are considered company IP, the developer must provide some means
for the simulation to be run without these elements. This is not likely to be possible, so the use of
such elements is discouraged.

3143 GPP Code Modeling

Modeling tools for components that are hosted on the GPP can be used for design only, or for the actual
implementation. Artifacts from the design phase, such as Unified Modeling Language (UML) class
diagrams, are usually included in the design documents.

Tool vendors have developed modeling tools that can take models created graphically and generate
complex applications in third-generation languages such as C++. Such tools enable platform-independent
development at a high level and can sometimes generate the platform-specific implementation, The model
produced is useful both as a design artifact and potentially as a method of delivery for the waveform;
however, this last possibility will require that the NED change its policy regarding waveform deliveries.
Such a policy change is unlikely to occur until there have been more advances in modeling tools and more
widespread acceptance of them by the industry. When machine-generated source code is included in a
waveform delivery, it must conform to the same portability guidelines expressed in this document as
manually developed code.

3.1.5 Waveform Architecture

One of the most important aspects of the overall waveform design success is its architecture—that is, how
the individual cornponents of the waveform are designed to implement certain functions required for the
waveform, how these components are allocated to the target platform hardware, and how data and control
move between the components. Note the use of the phrase “target platform hardware.” This is an instance
where environmental conditions may outweigh abstract portability standards. In such instances, the desire
for timely porting of a waveform between two similar platforms may make compromises in abstract
portability acceptable. This section is intended to be a high-level discussion of architectural concepts and
considerations rather than a complete and exhaustive treatise on these topics.

The grouping of functionality and the allocation of these grouped functions across platform computational
elements is closely related to the concept of software modularity. It is safe to say that most programmers
believe that they fully understand the concept of modularity and how to apply it; however, the degree to
which any given waveform can be subdivided into separate components has proven to be open to
interpretation. C/CH+ programmers and VHDL developers sometimes use these terms in different
manners, resulting in confusion between them. For this discussion, on the GPP, the term “component” is
synonymous with an SCA Resource, and the term “module” applies to an individual C++ class. On a DSP,
“component” will be used to describe major functional blocks, while “module” will refer to closely
associated functions usually contained in one source file. Typically, a component, as defined here, will
operate as an individual process on the GPP and DSP. On the FPGA, “component” better describes the
individual building blocks contained within the top-level “entities™. These components are akin to C++
classes.

Waveform Portability Guidelines 13

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Consider the following four major software characteristics when allocating functionality to waveform

components.

1. Cohesion — A measure of how strongly related and focused are the responsibilities of a single
component,

2. Coupling — The degree to which each program component relies on each one of the other
components.

3. Control flow complexity — A measure of how many conditional clauses exist in a software
component,

4. Data/Control interfaces — The interconnections between components.

It is difficult to establish a set of “one size fits all” nules for waveform architecture, as each waveform’s
requirements will differ; however, some general guidelines can be proposed.

1.

10.

Combine modules whose purposes are closely associated into components. Many modules may
exist within a component.

Place modules into separate components if there is likelihood that they will need to be hosted on
different CEs on one or more of the target platforms identified for this waveform.

The determination regarding component boundaries and component allocation to a platform CE
should include consideration of:

a. Waveform instantiation time

b. Latency

c. Platform CE performance capabilities across all targeted platforms

d. Piatform CE interconnection characteristics across all targeted platforms. This includes

consideration of the performance capabilities of the hardware implementing these
interconnections, as well as the sofiware used to support them.

Avoid designing unnecessary or excessive SCA port connections, as these will increase waveform
startup time and consume excess memory. Try refactoring software components to balance
portability with performance.

Do not use SCA Ports for interconnections between modules within a GPP component.

C+ modules (classes) should follow rules of cohesion, encapsulation, coupling, etc., such as in
The C++ Programming Language [9].

Design interrupt handlers to complete execution as quickly as possible. Use interrupt handlers to
schedule work in threads rather than doing all of the work in the handler itself. Note that interrupt
handlers are platform-specific and generally should not be a part of the waveform — especially in
the GPP code. There is a great possibility that such code may be needed in the DSP code, but the
necessary tight coupling to the platform means that it should only be a last resort.

Communication between components shall be compliant with the JTRS APIs. Additionally, use
the interface as it was intended, e.g., do not use configure(} when query(} would be more
appropriate.

Wrapping a non-portable legacy waveform in a thin, SCA-compatible layer does not produce a
waveform that is any more portable than the original. Avoid this practice.

Avoid custom SCA::Devices. Such devices are not required to be SCA compliant with the SCA
Application Environument Profile (AEP). The waveform should use those SCA::Devices provided

Waveform Portability Guidelines 14

NEDTE-PORT-GUIDE-1.2.1

28 Decernber 2009

by the platform unless absolutely necessary. If a waveform developer feels that the development of

a custom SCA.:Device is necessary, they shall provide documentation that supports their position.

11. Avoid developing components with high cyclomatic complexity scores and complex test paths.
Doing so supports maintainability and understandability, and thus enhances portability. Code with
high cyclomatic complexity is only acceptible if no substitute design can be found.

3.1.6 Inline Documentation

Properly written software includes inline comments that provide the readers with additional information
useful to gaining an understanding of the source code at which they are looking. This documentation is
commonly referred to as source code comments. Some basic guidelines regarding source code comments
appear in other sections of this document, but they are worth repeating and elaborating on here.

1. Source code comments shall be technically correct and current to the latest implementation of the

code.

2. Inline comments shall agree with the design and implementation described in the waveform design
documentation.

3. Both quantity and quality of inline comments are important to the understanding of the code.
Adequate quantity is relatively easy to characterize.

a.

Each source file shall have a comment header that, along with configuration management
information and the Government data rights statement, includes a description of the
function of the source code within the file. This description shall include the purpose of
the source module, inputs and outputs, preconditions, postconditions, and any special
notes particular to this source module. An example of such a note is an indication that the
files contain platform-specific software that is likely to require changes during porting.
Source file headers should conform to those rules outlined in the JTRS Software Standards
[81.

Each function within a source file shall have a comment header that describes any input
variables, output variables, the function algorithm, etc.

Any areas within a source file that the developer thinks may have portability implications
should be clearly marked. A simple way to make these areas easily located is to add a
specific tag in a header. This allows for keyword searches.

Developers should include particularly detailed comments in any areas where algorithm
implementations may be obtuse or difficult to understand.

Logical blocks, such as 1 f-else statements, for statements, switch statements, etc.,
should have a comment block above them that describes their purpose and how data and
control flow processing takes place within them.

4. It is more difficult to characterize comment guality, but a few common sense rules are:

a.

C.

Comments should provide information describing the function and structure of the code in
which it is located in a manner that is clear and readable.

Comments should be concise and should avoid requiring the reader routinely to refer to
other documents.

Comments must be maintained so that they are in agreement with the code.

All of these guidelines apply to all CE types, including DSPs, FPGAs, and GPPs.

Waveform Portability Guidelines

15

NEDTE-PORT-GUIDE-1.2.1

28 December 2009

3.2

C/C++ Programming Practices

This section describes those recommended C and C+ programming practices that enhance application
portability (Table 3-1) and those practices that are detrimental to portability (Table 3-2). Below are several
standards that a waveform developer should follow.

For C++, use the international standard ISOAEC [4882, published by the American National
Standards Institute (ANSI) as ISOJEC 14882:2003(E) [10].

For C, use the standard published by ANSI as ISOAEC 9899:1999, second edition 1999-12-01{11].
‘When using an Object Request Broker (ORB), C++ source code shall adhere to the C++ binding

standard for CORBA 2.3 (http://www ome.org/docs/formal/03-06-03.pdf) [12]. This applies to

any processor type on which C+ is used.
‘When using an ORB, C source code shall adhere to the C binding standard for CORBA 2.3

(http://www.omg.org/docs/formal/99-07-35.pdf) [13]. This applies to any processor type on which

C is used.

The use of the Standard Template Library (STL) and C++ Standard libraries, where appropriate, is
preferred over the use of proprietary libraries. Where proprietary or other third-party libraries must

be used, the delivery of the source code for these libraries to the Government with GPR is a

requirement.

Bias in the following tables is toward the most portable programming practices. Some of the guidelines

contained below may be less applicable as language standards evolve. The tables will evolve as necessary.

Table 3-1. Portable C/C++ Language Features

Recommended Programming Practice Notes

Use of absfractions

interface differences. Use of service and device abstractions hides

Protects against changes propagating through code due to platform

platform interface details

Safe serialization and de-serialization
(applies when SCA persistence
mechanisms canhnot be used)

Ensures that data is completely persisted and restored in a thread-
safe manner, and that factors such as system and object state are
taken into account

Segregate platfiorm-dependent files from
platform-independent files

Avoids confusion and allows for separation of build processes

Use careful naming procedures such as
the use of prefixes

Helps assure uniqueness

Encapsulate message construction and

parsing. Abstract the mechanics of data
transportation and the characteristics of

each participant of a data path.

This will insulate the application software from the transport layers and
from changes to the makeup of fransport connection points

main () mustbeinaC++file

Prevents problems caused by the use of different startup sequences
by the two languages. In addition to the C startup sequence, C++
calls the constructors for static objects.

Use the “common denominator” between
members of C/C++ compiler families

Some development systems differ in how they handle some types
between the C and C++ compilers

Put a new-line at end of file

Not having this breaks some compilers (and even some editors)

Always declare and define a default
canstructor

Some compilers simply will not work with classes that do not have
these. To avoid inadvertent instantiation, declare the constructor as
private

Declare local aggregates (such as

The only way to avoid loader emrors in some compilers is to define

Waveform Portability Guidelines

16

NEDTE-PORT-GUIDE-1.2.1

28 December 2009

Recommended Programming Practice

arrays) uninitialized, and then iniialize in
code

Notes

such aggregates as static; however, doing so is not thread-safe.
Initializing in code after the declaration is safe under all circumstances

Use virtual declaration on all subclass
virtua! member functions

Include virtual declarations in subclasses as well as the parents. This
avoids warnings in some compilers and provides better
documentation

Always declare a copy constructor and
assignment operator

Avoids automatic generation of copy constructors by compiler; auto-
generated ones are usually not optimal

Type scalar constants to avoid
unexpected ambiguities

Avoids ambiguous function calls in overloaded functions

Use the .cpp filename extension

Supported by all C++ compilers, while .cc is not

Avoid implicit object construction.
Declare constructors with a single
argument as explicit

Constructors that take a single argument are alsc known as “implicit
type conversion operators.” They can be used to implicitly convert
one data type to another {"implicitly” means "without the developer
explicitly coding it"). Declaring the constructor as explicit prevents
the compiler from using the constructor in this manner.

Use compiler control flags that enforce
ANSI C/C++ practices

Encourages compliance with ANSI standards

Use extern “C* to protofype C
functions that will be called from C++

Improves readability and avoids compiler problems

Implementing the practices outlined in Table 3-1 will improve the chances of a waveform being truly
portable, but that improvement can be negated by other programming practices that inhibit portability.
Table 3-2 below lists comnmonly used programming practices that are known to inhibit portability.

Table 3-2. Non-Portable C/C++ Language Features

Discouraged Programming Practice Notes '

Use of pragmas

Typically used to select language extensions or alignment changes;
interpretation varies between compilers. As such, these are often
platform-specific. If pragmas must be used, they must be thoroughly
documented in the SDD

Use of bit-fields Appear as structures with colons and may cause problems due fo
differences in endian-ness. As such, these are often platform-specific.
If pragmas must be used, they must be thoroughly documented in the
SDD

Use of unions Alignment dependent. Also could cause problems with endian-ness.

As such, these are often platform-specific. If pragmas must be used,
they must be thoroughly documented in the SDD

Use of native types

Often compiler-specific; the identifier int is 16-bit or 32-bit,
depending on compiler. Should always use typedef INT 32 or
INT 16, efc.

Floating point equality or in-equality

Fleating point should always be compared to some epsilon.

Variances between compilers may cause floating point math to
produce very small residual values. Comparing such values to
constants, such as 0, can produce unforeseen results. Example:
instead of i.£ (£ == 0), aprogrammershould say if (abs(f) <
epsilon) where epsilonis defined as a very small number

Pointer greater than or less than

Memory location-specific; the only pointer comparisons allowed are
equality or in-equality

Waveform Portability Guidelines

17

NEDTE-PORT-GUIDE-1.2.1

28 December 2009

Discouraged Programming Practice Notes

Use of Object Request Broker{ORB)-
specific calls

Different CORBA ORBs often have differing calls for functions, such
as initialization and exception handling; these can be masked by the
use of macros

Use of “iend” mechanism in C++

This creates an instance of “overt coupling"” wherein one class has
access to the internal implementation of another, thereby, creating a
dependency

Public data members in C++ classes

This can create an instance of “suireptitious coupling” wherein one
class has access to the internal implementation of ancther, thereby
creating a dependency. All data members should be accessible from
outside the class only through "set” and “get’ methods

Defining macros with trailing punctuation

suchas " or"”

Macros should generally behave as a constant, a prograrn staternent,
or a function. Macros that behave as program statements or functions
should tolerate the addition of a semicolon at the end at the time of
use. Many compilers will not tolerate two semicolons

C++ templates other than those defined
in the STL

Not universally supported; implemented differently amongst compilers;
results in code bloat. Templates often cannot be completely avoided,
but programmers should be careful when using them and must
thoroughly document their use

Embedded assembly language

Search for the keyword “asm”; allowed by the SCA [4), but still a
portability risk; abselutely machine-specific and should be aveided in
the GPP. Any use on the DSP should be thoroughly documented

Use of nested C-style comments

Not interpreted the same by all compilers

Nesting of namespaces beyond depth of
two

Namespaces increase the size of finker symbols, whose length may
be restricted on some platforms

Unnecessary top-level semicolons, l.e.,
do not put unnecessary semicclons in
global scope

Some compilers will not accept unnecessary semicolons

Mixing of varargs and inlines

Not consistently implemented by all compilers

Use of nested classes

Implemented differently by some compilers depending on whether
they follow the 1998 C++ standard or the 2003 C++ standard

Declaration of iterator variables inside
for () statements

Prevents code compilation when using tools that lack support for
"for-scoping”

Use of complex inline constructs

Unpredictable behavior from compiler to compiler; keep inlines short

Use of the mutable keyword

Leads fo code that is difficult to debug

Definition of constants using simple
names such as ERROR, FOREVER, and
TRY that are the same as language key
words

Such names may conflict with definitions in libraries used by the
development system; such definitions should include something to
identify the context in which they apply

Use of vendor-specific preprocessor
directives

Not portable to other development environments

Absolute pathnames for included header
files

Not likely to be portable to other development systems without change

Allocation of automatic variables whose
size cannot be determined at compile
time

Some compilers will allow automatic variables (e.g., buffers) to be
sllocated with a size based on the value of some other variable. This
is not ANSI compliant and is not accepted by many compilers.
Besides being non-portable, this is simply bad programming practice

using directives and using
declarations in header files

Including a using directive in a header file will cause problems for
anyone including the file. It can cause namespace collisions when

Waveform Portability Guidelines

18

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Discouraged Programming Practice Notes

inciuded by other developers

Use of vendor-supplied macros Macros supplied by compiler, ORB, and CF vendors are not likely to
be portable

Use of C-style type casts in C++ Use of C++ static casts is preferred due to type safety and readability

Use of native C++ exception handling Not portable fo platforms that do not support native exceptions. Can
adversely impact performance and increase code size

33 GPP Guidelines

3.31 GPP Performance

The waveform developer shall verify the extent of processor utilization in terms of Millions of Instructions
per Second (MIPS) and mermory requirements — both under peak processing load. The waveform shall be
capable of execution on all target platforms with a specific minimum margin in terms of processing
resource consumption on the least of these platforms. The specific margin value, and how it is determined
will be defined by the Government in the waveform acquisition contract. MIPS allocations must include
the GPP used determine processor utilization and the associated clock rate being used on the
processor. The developer shall provide documentation for the capacity numbers, including their derivation,
in the SDD. Note that there may be JTRS piatform hardware requirements for GPP performance and
memory margins that override this guideline. The developer and the Government should research the
platforms selected for this waveform and identify any such issues. '

3.3.2 POSIX Compliance

Waveform use of GPP Operating System (OS) services is constrained to the use of Portable Operating
System Interface (POSILX) functions identified in the Application Environment Profile (AEP) defined in the
SCA Specification [4]. The SCA standard prohibits the use of any other OS functions, as the use
constitutes a serious threat to portability.

3.3.3 Use of JPEO Standard APIs

GPP interfaces between the waveform and the devices and services provided by the target platform shall be
through APIs standardized by the JPEO in the API Standardization Plan [7]. Use of these APIs enhances
the portability by ensuring that the waveforms and platforms speak the same language for these services.

These APIs will necessarily continue to evolve, and the JPEQ may not yet have standardized some
interfaces between the waveform and platform by the point of need in a particular waveform development
effort. In such a situation, the waveform developer shall follow the guidelines set out in the Standards
Standardization Plan [7] regarding the expansion of the existing standardized APIs and/or the development
of new APIs for JPEO approval. When appropriate APIs do exist, the waveform shall conform to the API
standards in place at the time of the contract award for that waveform development program.

3.34 Device Interface Abstractions

One of the characteristics of the SCA. [4] is its reliance on abstractions of radio-specific devices to insulate
the waveform-specific code from platform details. This is particularly common between waveform
components hosted on the GPPs and hardware devices on the radio. The usual boundaries between
waveform and platform software locate the abstraction for the device on the GPP and present interfaces for
interaction with the waveform. The abstraction, implemented as an SCA Device, sits above a device- and
platform-specific driver. The interface will hide details of the communication path between the waveform
and the hardware device,

Waveform Portability Guidelines 19

NEDTE-PORT-GUIDE-1.2.1 28 Decemnber 2009

Refer to Figure 3-1 for an example of portable design. At the bottom of the figure are low-level devices
connected to the GPP through either the FPGA or DSP. Below the waveform component is an SCA
Device abstraction that implements the API for the device. This abstraction communicates to the device via
the MHAL [5] (or MOCB [6]) layers on the GPP and the FPGA or DSP, as shown. Note that in no case
does the waveform application ever interface with the low-level drivers. All communications occur through
abstraction layers. As a result, waveform software communicating with the low-level device is insulated
from changes to that device. The device interface sofiware can be ported either to DSPs from another
vendor, or hosted on a different device such as an FPGA.

Note: Figure 3-1 is a generic figure and does not represent the only possible configuration. Some
configurations may include waveform components within the DSP and/or the FPGA.

GPP GPP
Wavelorm GPP | Wavsform GPP
Cur’nponeﬁt R Component
e Device APl Implemented vla CORBA #
SCA Device SCA Device
Abstraction Abstraction
A MHAL API A)
MHAL Y (Extended if necessary for new device) Y MHAL
Coverage MHAL Laver on MHAL Layer on Coverage
GPP GPP

B MHAL Layer |
i ‘Waveform } |
B Component .

MHAL Layer

Movement of waveform -
component from FPGA to DSP !
hidden from Waveform software i

vla MHAL abstraction.

|5 MHAL Layer '
|

4y Waveform GPP. [il

& Component i

MHAL Layer

AT

Figure 3-1. Example of Piatform Abstraction

This picture changes when the platform uses an ORB on the DSP and/or FPGA. This change allows the
abstraction to move closer to the actnal device and removes the need for the use of MHAL APIs. Thisis
relatively new technology and no designs reviewed by the Government to date include this capability.

3.4 DSP Guidelines

This section lists some guidelines for DSP development. NED T&E personnel and knowledgeable
individuals in the software industry contributed to the development of these guidelines.

1. Verify the extent of processor utilization in terms of MIPS and memory requirements at peak
processing load. The waveform shall be capable of execution on all platforms for which this
waveform is targeted with a specific minimum margin in terms of processing resource
consumption on the least of these platforms. The specific margin value, and how it is determined
will be defined by the Government in the waveform acquisition contract. MIPS allocations must
include the DSP used to determine processor utilization, the associated clock rate being used

Waveform Portability Guidelines 20

NEDTE-PORT-GUIDE-1{.2.1 28 December 2009

3.5

on the processor, anty internal clock multipliers, or the core clock rate used. Provide
documentation for these numbers, including their derivation, in the SDD. Note that there may be
JTRS platform hardware requirements for DSP performance and memory margins that override
this guideline. The developer and the Government should research the target platforms identified
for this waveform and identify any such issues.

If CORBA connectivity does not exist in the DSP, ensure that all interfaces to other CEs and
remote devices comply with either the TTRS MHAL [5] or MOCB [6] standard.

Limit use of processor-specific OS functions. If use of such functions is mandatory, abstract them
through local functions, Limit use to basic fumctions that other DSP operating systems are likely to
support. The developer should research the target platforms identified for this waveform and
document any portability issues related to differences in DSP OSs. This documentation can be
focated n the SDD or a WPP, as appropriate.

Avoid assembly language unless it is necessary to meet performance requirements. The waveform
developer shall provide justification for the use of assembly language. In the SDD, fully document
the purpose and execution of any embedded assembly language and include a version of the
algorithm wrilten in a portable, high-level language.

The waveform developer shall put in place a set of DSP cading standards requiring that they abide
by all language rules, provide a common look and feel to the code across all modules, and be
readable and maintainable.

Exercise caution in the use of mathematical operations where the C++ standard [10] and the C
standard [11] are ambiguous and permit the developer to be "implementation-specific”, such as in
the case with the modulo/remainder operation on negative numbers in the C++ standard, The
developer shall implement the code in a way that does not rely on the operation of a specific
compiler in these cases.

Exercise caution when using chip support libraries or other similar processor-specific APIs or
functions within waveform DSP code. Whenever possible, avoid functions that are not likely to be
commonly available across multiple component’s support libraries. The waveform developer shall
fully document the purpose and execution of any processor-specific (i.e., chip support} APIs or
functions in the SDD.

FPGA Guidelines

This section lists some guidelines for FPGA development. NED T&E personnel and knowledgeable
individuals in the software industry contributed to the development of these guidelines.

Note: The Government considers any VHDL written for the waveform and required for its operation to be
software, and to be a deliverable along with the GPP and DSP source.

1.

Source code shall conform to active VHDL standards, 1076 [14] and 1164 [15], set forth by the
Institute of Electrical and Electronics Engineers (TEEE).

Ensure that all interfaces to other processors and remote devices comply with either the JTRS
MHAL [5] or MOCB [6] standard.

‘When an IP core is used, documentation describing all input parameters used to generate the IP
core shall be provided in the SDD. In general, the more generic IP cores (e.g., simple adders,
multipliers) are more acceptable as the WI can reasonably expect them to be available on devices
other than the original target. If the IP core in question is known to be available on components
from other FPGA manufacturers, its use is acceptable.

Waveform Portability Guidelines 21

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

4. The VHDL system architecture should use modular components that provide a logical scope of
functionality. Each entity should have a clear and defined role in providing functionality to the
system.

5. Verify the extent of FPGA resource utilization at peak processing load. Ensure that there is
sufficient margin (at least 25%) remaining. Provide documentation for these numbers, including
their derivation, in the SDD. Note that there may be JTRS platform hardware requirements for
FPGA performance and memory margins that override this specific guideline. The developer and
the Government should research the target platforms identified for this waveform and identify any
such issues.

Note: NED T&E engineers compared and analyzed the differences between specific JTR
platforms, and determined that this guideline provides reasonable room for growth, JTRS product
lines my have different margin requirements. Where those requirements differ from the 25%
margin discussed here, the PAT will use the higher of the two numbers.

6. Abstract or eliminate the use of off-chip resources. Off-chip resources include anything from
memery, Analog to Digital Converter (ADC), or even a serial interface to a DSP or GPP. The idea
is to create a component driver for each off-chip resource to abstract the component from the
waveform or core FPGA processing using MHAL or MOCB. This approach allows porting of the
code to a new platform, changing only the individual components, and leaving the core
unmodified. Still, it is best to eliminate the need for such off-chip resources, if practical, such as
those resources that may not exist on other platforms. If system performance requirements cannot
be satisfied without tightly coupling the waveform FPGA code to the platform, the developer must
provide the rationale for this, and must thoroughly document the structure and functionality of the
interface to the off-chip resource in the SDD.

7. Use of vendor specific primitives should be avoided unless absolutely necessary. If such primitives
must be used, the developer must document them thoroughly and provide rationale for their use in
the SDD.

8. Retain simulation portability by avoiding the use of simulation tool-specific simulation control
language or APIs.

9. Minimize the number of clock domains to reduce/eliminate hardware dependence on multiple
clocks; this practice will reduce design size, complexity, and resources and lower power
consumption. Documentation of the clock domains must be included in either the SDD, ora
separate firmware design document.

10. Use generics as component parameters to help eliminate platform-specific buried constants and
optimize code.

11. Use ‘type’ objects to enhance the ability to use generics and simplify code.

12. The waveform developer shall put in place a set of VHDL coding standards requiring that they
abide by all VHDL language rules, provide a common look and feel to the code across all modules,
be readable and maintainable, and avoid obsolete VHDL constructs. Following the guidelines in
VIIDL coding style guides, such as VHDL Coding Styles and Methodologies [16], will achieve
this.

13. Any software hosted on embedded GPP or DSP cores shall be implemented following the
guidelines in Sections 3.3 and 3.4 above, as appropriate.

Waveform Portability Guidelines 22

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

3.6 Domain Profile Guidelines

The Domain Profile is a collection of eXtensible Modeling Language (XML) files that the radio uses as a
list of instructions of how to load, configure, and start up the waveform. The list below contains some
guidelines for Domain Profile development. NED T&E personnel and knowledgeable individuals in the
software industry contributed to these guidelines.

1. Adhere to Appendix D of the SCA [4] for format and content of the Domain Profile XML.

2. There are commercially available Domain Profile editing tools oriented toward the SDR industry.
Using one of these tools will aid in the development of error-free XML. If such tools are used,
supply the resulting model to the Government. The Government already requires that the
developer submit XML files.

3. Use care when assigning Universally Unique Identifiers (UUIDs) as the assignment process can be
error prone. Use either a script to keep track of the UUIDs and then run it to input the correct
UUID into each field, or alternatively use a graphical Domain Profile editing tool.

Validate XML files in accordance with SCA Document Type Definition (DTD) files.
Define all waveform configurations and properties inside the XML Properties Files (PRF).

Define memory requirements for each component in the Software Package Descriptor (SPD)
file(s).

7. Provide a properly formatted and written Software Component Descriptor (SCD) file(s). Even
though the SCD is not required by all SCA Core Frameworks (CF), it is still good documentation
for understanding the waveform.

3.7 Documentation Guidelines

Waveform documentation serves three important functions related to enhancing waveform portability.
First, it provides all parties with a clear understanding of the expectations from each respective party.
Second, it provides anyone involved in porting or assessing the waveform a clear understanding of how the
waveform is structured and how it functions. Third, it identifies and discusses issues related to porting to a
specific target platform. The SOW, the Waveform Design Specification (WDS), and the Software
Requirements Specification (SRS) embody the first function. The SOW, in particular, will capture the
contract-related issues. The WDS, SRS, SDD, and IDD(s) embody the second finction. The WPP and
‘Waveform Porting Report (WPR) embody the third, along with contributions from the design documents.

Note: Appendix C contains guidelines for Government development of the SOW,

Assessment of the deliverable documents will go beyond simply determining whether each document
fulfills the requirements of the appropriate Data Item Description {DID), although meeting those
requirements is still necessary. The assessment team will review the documents for readability, for how
well it conveys the information necessary to understand the structure and function of the waveform, and for
what implementation changes are necessary to port the waveform. The PAT expects these documents to be
consistent with the delivery of the software in which they are included. This applies to interim deliveries, as
well as the final delivery.

Several of the documents discussed in this section benefit from the inclusion of UML diagrams. State
diagrams, sequence diagrams, and tiring diagrams (added in UML 2) are particularly good at conveying
information regarding program flow and module interactions. Class diagrams, component diagrams, and
object (also known as instance) diagrams are useful in describing program structure. All of these are more
useful in the WDS, SDD, and IDD docuiments as these are the ones that provide the most information on
the waveform design and implementation.

Waveform Portability Guidelines 23

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Documentation deliverables include everything necessary to recreate the design and its motivation without
the need to consult the waveform designer. The specific documents detailed below are the minimum
acceptable to the Government.

371 Waveform Design Specification

The WDS is a top-level design document describing how waveform finctional, operational, and
performance requirements translate into hardware and software specifications. The document specifies
requirements for the integrated system of waveform and platform—such as tuning range and accuracy,
receiver sensitivity, dynamic range, timing requirements, Communications Security (COMSEC) modes,
Transmission Security (TRANSEC) latency, and Over-the-Air (OTA) protocols—to hardware and software
sub-systems. Perform this allocation and underlying analysis for all intended target platforms. Clearly
identify constraints and restrictions that reduce the set of operational requirements achievable in any
intended environment. In most waveform acquisitions, the WDS is the primary document from which
requirements are derived for inclusion in the SRS. Some acquisitions reverse the process and generate the
WDS from the SRS. In either case, the WDS provides the context necessary for the PAT and a WI to
understand the rationale for the requirements. The WDS does rof capture design details.

In some instances, it may be necessary to assign some waveform finctionality to hardware rather than
software in order to meet system requirements. The waveform developer should explicitly identify and
explain instances where a system requirement cannot be satisfied without an adverse impact on portability.

The WDS shall comply with the following guidelines and shall conform to the WDS DID, NEDTE-WDS-
DID-V0.1 DRAFT [17].

I. List any requirements placed on the target platform(s) by the waveform.

2. Describe the functionality of the overall systemn, such that a reader not familiar with this particular
waveform can understand it clearly.

3. Clearly define all protocols and data translations in a manner that focuses on the necessary
fumctionality and is not implementation-specific. Include all timing requirements, packet formats,
etc., that are specific to the protocel, but not to the waveform’s implementation of it.

4. Clearly identify constraints that impede test coverage.

Clearly separate the waveform components from the platform components required by the
waveform,

6. Identify the types (GPP, DSP, and FPGA) of CEs required by the waveform and what waveform
functions will be hosted on what CEs.

7. Describe the technologies the developer intends to use for waveform component developments;
including programming languages, code generators, modeling tools.

8. Identify and discuss those properties of the waveform and/or platform constraints that are likely to
impede portable design.

9. Identify all of the programmatic requirements applicable to the waveform, such as compliance with
the SCA [4] and adherence to these portability guidelines.
3.7.2 Software Requirements Specification

The SRS lists the requirements that are usually derived from the WDS. The SRS for a portable waveform
should state waveform requirements for all intended environments. The SRS shall comply with the
following guidelines and shall conform to the SRS DID, NEDTE-SRS-DID-V0.1 DRAFT [18].

Waveform Portability Guidelines 24

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

1. Require that the waveform components must be able to fit within the device capacity, such as
memory and gates, of the hosting CEs for all of the intended target platforms.

Indicate applicability across all intendex target platforms for each requirement.

Clearly separate software requirements allocated to the waveform from those that the waveform
software requires of the platform.

4. List the timing requirements for each waveform component.

Provide the requirements traceability and analysis used in requirements flowdown.

3.73 Software Design Description

The SDD describes the design of 2 Computer Software Configuration Item (CSCI). It describes the CSCI-
wide design decisions, the CSCI architectural design, and the detailed design needed to implement the
software.

In a typical development, design documentation is available long before software source code. Many
software development process manuals indicate that the majority of the life cycle leading up to test and
delivery is dedicated to the design phase. For portable sofiware, it is essential that attributes of the design
that give rise to portability are manifest throughout the design documentation. Per the SDD DID, [19],
elements of the SDD are a description of the CSCI-wide design decisions and architectural design, and a
decomposition of the software design. For JTRS waveforms, it should also include a description of SCA
interfaces, APIs, commumication protocols and Devices, and a description of how the design supports all
intended target platforms. The SDD shall comply with the following punidelines and shall conform to the
SDD DID, NEDTE-SDD-BID-V0.1 DRAFT [19)].

1. Provide an overall view of the structure of the waveform, including visibility into the DSP and
FPGA components. This must include itlustration of the allocation of waveform resources and
components to CEs, and the connections between them.

2. Discussion of approaches considered and rationale for decisions made.

Include a complete end-to-end description of user data and control flow through the system,
including details on the translations that eccur along the way. The information highlighted in
bold italics is particularly important.

4. Identify the distinct adaptation components that allow the waveform to overcome different
hardware device interfaces among target platforms. Figure 3-1 shows an example of adaptation
components used in concert with the MHAL for abstracting devices.

5. Contain the descriptions of the MHAL or MOCB abstractions used for all non-GPP computational
nodes not already provided by the target platform as radio services or radio devices, e.g., FPGA,
DSP, Antenna(s), Low Noise Amplifier (LNA), Automatic Gain Control (AGC), ADC, serial and
audio ports, Digital to Analog Converter (DAC). Refer to the MHAL Standard [5] or the MOCB
Standard [6] for details regarding the use of these interfaces for such devices.

6. Clearly differentiate between waveform components (Resources) and platform components
(Devices).

7. Identify all expected “uses™ and “provides™ port connections between waveform components and
between waveform components and the platform.

8. Identify any non-CORBA connections between waveform components and the platform that do
not comply with either the MHLA or MOCB standard. If any such connections exist, the SDD
should provide a rationale for them,

Waveform Portability Guidelines 25

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

8. Describe, in detail, any non-CORBA and non-MHAIL/MOCB interfaces. Include protocol
definitions.
10. Provide justification for implementation of waveform components in an FPGA that could be

implemented in the DSP or GPP. Generally, a GPP or DSP implementation of a component is
more portable than an FPGA representation of the same component.

11. Clearly describe hardware dependencies, including memory usage, MIPS requirements, latency
limits for any platform-related APIs or signaling, specialized interprocessor interfacing, specialized
system clocking mechanisms. Provide to the Government the rationale behind these dependencies.

12. Point out areas that are likely to have portability implications and discuss those implications.

13, Define all configuration parameters, their ranges, and their default values.
14. Contain DSP and FPGA design documentation that includes the following,

a.

— ot e -

8

Description of the data and control signal flow paths, including sampling rates at al! internal
and external interfaces, number of samples used to represent the signal and numerical
representation of the signal at all internal and external interfaces, associated buffer/memory
usage, and any control interfaces to the signal path

High level architecture design diagram

Detailed diagrams and descriptions of individual components, including a description of the
clock frequencies used. If multiple frequencies are used, the documentation must include a
description of the clock boundaries

Detailed descriptions of all state machines

Detailed descriptions of adaptive types of algorithms and analysis behind adaptive ioop
parameters used and decisions reached

Schematics of VHDL designs

Detailed descriptions of the method of synchronization, including, but not limited to, frame-
level synchronization, slot-level synchronization, bit-level synchronization, and interprocessor
synchronization

Indication of where component vendor-specific code was used and why. This includes
descriptions of the functionality of such code, as well as the method(s) and parameter(s) for its
generation

Detailed register definitions

Detailed description of timing considerations and use of interrupts
Detailed description of the timing of any other critical events
Interface timing diagrams

Static timing analysis

File hierarchy and/or diagram indicating boundary between waveform and platform
components; files containing platform functionality should be distinct from those with
waveform functionality

Design hierarchy showing section number in WDS that each item implements

Wrapper/Interface descriptions

Waveform Portability Guidelines 26

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

374 Interface Design Descriptions

The waveform developer should identify all devices, services, interfaces, libraries, and macros considered
external to the waveform (i.e., provided by the platform) and should describe, in detail, the interactions
between these external entities and the waveform. The waveform developer will create one or more IDDs
to provide these descriptions. These IDDs should correspond to APIs approved by the Interface Control
Working Group (ICWG), per the Standards Standardization Plan [7].

The PAT considers waveform-specific SCA Device abstractions that are instantiated with the waveform to
be part of the waveform and to present significant portability issues. Despite the portability risk, some
waveform developers have chosen to include them. This practice is discouraged.

The assessment team will review the IDDs both for readability and for how well they convey the overall
structure, implementation, and functionality of the waveform interfaces. The waveform developer should
adhere to the following API guidelines and shall conform to the IDD DID, NEDTE-IDD-DID-V0.1
DRAFT [20].
1. The JPEO JTRS mandated use of the ICWG-approved APIs for waveform/platform interfaces; the
Standards Standardization Plan [7] lists the approved APIs. If an existing API is not adequate,
follow the rules defined in the Standardization Plan for expanding an existing APT or creating a
new one.

2. Non-CORBA waveform interfaces should conform to the MHAL [5] and/or MOCB [6] standards .

In accordance with the SRS, verify for each porting target that all waveform operations required by
each waveform SCA wuses port can be satisfied by the available operations on the platform services
SCA provides ports. All waveform required wses operations should have a corresponding platform
or external device SCA provides APL

4. TFor GPP waveform components, every interaction with the DSP/FPGA should use either the
MHALDevice or MOCBDevice interface. The API documents must address the impact of
whichever of these interfaces is used on latency of command and user data.

The IDD should include the IDL for all CORBA interfaces.

6. The IDD should include the sequence of commands necessary for the entities on both sides of an
interface to reach their operational state. This will aid in independent testing of waveform
components.

3.75 Software Version Description

The Software Version Description (SVD) serves the dual purpose of a shipping list and set of build
instructions for a specific waveform software delivery., In compliance with the SVD DID, NEDTE-SVD-
DID-v0.1 DRAFT [21], the SVD shall:

1. Contain a complete inventory of the files used to build the waveform. This includes all GPP, DSP,
and FPGA source. [t also includes all IDL files, as well as any other files used in the build process.
This inventory must also include the size of each file and their version numbers.

2. Listall XML files necessary to deploy the waveform.
3. Indicate which Software Assembly Descriptor (SAD) file is used for waveform instantiation.

4. Completely describe the target environment on which the release of the waveform being assessed
is intended to function. The PAT must be able to duplicate this environment in order to determine
that it has built a functional waveform.

5. List all documents relevant to this version of the software. This must include version and release
dates for each,

Waveform Portability Guidelines 27

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

6. Include a detailed description of the build environment, including version numbers for each tool
used.

7. Provide instructions for building the waveform application that are complete and correct. The PAT
will use them to attempt a build of the waveform.

Contain a list of problems or limitations that apply to this software release.
9. Listany and all dependencies on the OF so that the PAT and a WI will know what OE components
{ORB stubs and skeletons, header files, etc.) are required to build the waveform.
3.76 Waveform Porting Plan

The WPP contains information that describes the steps that a WI must take in order to rehost the waveform
on a platform other than that on which it was developed. The WPP shail include a comparison between the
original development platform and the target for which they write the document. This comparison will
identify issues that could impede the port, allowing for their mitigation, if possible. The WPP shall comply
with the following guidelines, as well as with NEDTE-WPP-DID-V(.1 [22].

1. Describe a waveform structure matching the one described in the WDS, SDD, and IDD.

2. Include sizing and timing analysis for both the original and target platforms for the waveform
components hosted on the GPP(s), DSP(s), and FPGA(s).

3. Include gap analysis for those cases where the original and target platforms have different
hardware.

4. Specify what changes are required for each waveform or platform component.

Address any issues where the target platform may not have sufficient resources to support the
waveform. If such issues exist, the WPP should provide a mitigation strategy.

6. Identify the requirements that the PPVT will verify.
7. Describe how the PPVT will be performed.

8. Identify the resources required to port the waveform; include personnel, laboratory facilities,
equipment, and tools [both Commercial-off-the-Shelf (COTS) and vendor-developed].

9. Identify any licensing issues regarding waveform components or those platform components that
may be present in the development platform but not in the target platform, and that are required by
the waveform.

10. Provide a detailed schedule of the port.
If there are any conflicts between these guidelines and the DID cited above, the DID has precedence,

3.7.7 Waveform Porting Report

The WPR describes how the waveform port proceeded, including discussion of any unforeseen issues that
may have come up, how close the WPP was to the actual port, and the results of the PPVT. The WI should
include in the WPR metrics that describe the number of lines of code that they reused, changed, and added
during the port. This information will quantify the amount of rework required on the waveform. The WPR
shall comply with the following guidelines as well as with NEDTE-WPR-DID-V1.0 [23].

1. Describe, in detail, any required changes not identified in the WPP,
2. Describe, in detail, any changes identified in the WPP that were not required.

3. Describe the functionality of any new waveform or platform components developed as a part of the
port.

Waveform Portability Guidelines

28

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

4, Describe, in detail, any structural changes required as a part of the port.
5. List the results of the PPVT, providing explanation for those tests that failed.

6. Provide details of the actual schedule of the port, describing any variances from the schedule
included in the WPP.

7. List any unplanned resources required for the port.

8. List tools and/or methods used to generate the metric included in the WPR. This should preclude
any confusion due to differences in measurement methods.

If there are any conflicts between these guidelines and the DID cited above, the DID has precedence.

Waveform Portability Guidelines 29

NEDTE-PORT-GUIDE-1.2.1

28 December 2009

4 Portability Assessment Background

There are four main functional areas tested on each JTRS waveform: SCA [4] compliance (performed by
the JTEL), Performance, and Portability (both performed by NED T&E). Each organization involved will
perform either tests or assessments to determine if the waveform is compliant in its area. This document
focuses on Waveform Portability, detailing the guidelines developed to ensure that the waveform complies
with JTRS portability objectives. The WPAP [1] uses these same guidelines as a basis for the assessment
criteria. The following sections summarize the assessment process criteria and application,

41

Portability Qualities

Section 1.2.4 lists the qualities that the PAT must assess to determine the portability of a waveform. The
rationale for each of these qualities appears in Table 4-1 below. The rightmost column indicates some of
the questions that the PAT must ask to determine if the waveform embodies the quality described in the
lefimost column. To make these determinations, the PAT must consider three major aspects of the -

waveform: documentation, architecture, and implementation.

Table 4-1. Portability Quality Rationale

Portability Quality Rationale Determination

Traceability To be considered portable to a given Does the documentation supplied provide prrof
platform, a waveform mustimplement its | of complete requirements coverage?
f:urglg?:;f ;Iget%;lrrr:angﬁp E ec' 2 :ﬁttzrrgtth © Does the documentation include traceability
platform(s) as well. Only requirements | trough design and test?
listed as optional in the SOW may be
omitted from the port. The PAT analyzes
the design to ensure that it implements
the waveform’s requirements without
requiring hardware or software
components that are unavailable on the
waveform’s respective target platforms,

Extensibility Porting to a new platform inevitably Does the documentation clearly describe the
involves adapting code to new waveforn so that the Wi can understand its
interfaces, new devices, and new architecture?
functions. T i .
mgdu?:risty o? ge}:?gz ﬁ%s:?;;etggf Is the described architecture one that enables
difficulty associated with modification or easy modification and/or extension of the
extension of a waveform as part of the waveform?
portability assessment. In some cases, | Does the developer's implementation avoid
a platform-specific implementation may platform-specific interfaces?
be acceptable, but design details must .]
be provided for any redesign and poes the implementation abstract platform
optimization. interfaces?

Efficiency Often a waveform must be ported fo a Is the waveform designed with an architecture
platform with different or more stringent that maximizes efficiency for resource-
resource constraints than the original constrained platforms, or does it appear to
platform. The PAT evaluates the assume unlimited resources?
gnairg\%%’ththrr:;&?g;téﬁeg%eaagvefom Did the developer's implementation maximize
to ensure that they fall within the performance of the compilers and promote
constraints of targeted or potential JTRS | SMcient use of system resources?
form factors.

Testability Waveforms typically require a fair Does the waveform architecture provide for
amount of debugging during a porting testing of individual modules?

Waveform Portability Guidelines

30

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Portability Quality Rationale Determination

effortand itisimportant thatthe Does the architecture allow injection of test data
waveform provide a means of verification | anq vigibility of the results?

of its intemal functionality. The PAT will

take into consideration the amount of Did the developer's implementation inciude
support included for debug, tracing, debug and tracing capabilites?
inspection, and verification of waveform
functions.
Understandable It is impossible for the PAT to assess, Does the documentation clearly and concisely
Design and the W to port, something that they describe the waveform in a manner that is easily
do not understand. It is the waveform understood?

developer’s responsibility to provide .
sufficient documentation to provide both Does the waveform architecture follow best

the PAT and the WI with sufficient practices for qualities such as modularity, etc.?

details. The documentation must be Does the implementation include good in-line
clearly presented so that they gain the documentation that clearly describes the
necessary level of competency withthe | implementation of the design?

waveform software.
Maturity Extensive testing is necessary to verify Does the test documentation present a clear
that all required functionality is still picture of a waveform that performs as required

present in a ported waveform. Tomake | on its development platform?
this achievable, the waveform must
already be thoroughly tested and
understood on its original platform so any
differences in behavior on the new
platform can be identified. Any
waveform delivery to be assessed for
portability must be complete and
functional on its original platform, and a
complete set of test procedures — and
errata, if any — must be supplied in the
delivery. This includes test vectors.

Did the developer's coding practices include
the creation of test vectors, and were those
vectors provided in the waveform delivery?

Ease and Degree of This is a measurement of the Does the documentation clearly indicate those
Work Necessary to waveform's portability generated during | areas such as interfaces that are particularly
Port the assessment process. The important relative to portability?

Government's goal is to port waveforms
in less time and for lower cost than
required for new development.

Does the architecture embody the priciples
described in this document for enabling

portability?

Does the implementation follow the guildelines
described herein that enable portability?

4.2 Assessment Methodology

All waveforms are different, and the steps necessary to assess their portability will vary. Even so, activity
will take place for each waveform of the three areas described in the following paragraphs. Refer to the
WPAP [1] for a detailed description of the assessment process.

421 Laboratory Analysis

While a skilled software engineer can learn a great deal about the portability of a waveform application by a
detailed analysis of the source code and documentation, there are tools and techniques for a laboratory that
will more efficiently locate and understand waveform portability characteristics. One of the first steps NED
T&E will take is to build the waveform on a copy of the original development environment to establish a
baseline. Next, a simple step proven very effective is to attempt to build the waveform using tools that are
different from those with which it was originally developed, and targeting the waveform GPP software at a
different Real-Time Operating Systems (RTOS) and ORB. This step will immediately point out the use of

Waveform Portability Guidelines 31

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

development tool-specific programming practices. This practice goes beyond work done for a port of the
waveform, because it is quite possible that the target platform and the development platform will use the
same components (RTOS, ORB, etc.) and will use many of the same tools (compilers, etc.).

Also valuable are simulation and modeling tools used to determine the performance envelope of software
components. These tools will be helpful to determine waveform component portability to a system that has
less capacity than the development platform in the appropriate CE. Adding instrumentation to the code will
provide the assessment team with similarly useful information for analyzing timing critical areas in the
waveform.,

The assessment procedures list a number of particular waveform characteristics that the PAT will assess in
the lab. These characteristics will result in the generation of a portion of the overall rating given to the
waveform.

42.2 Waveform Porting

The most effective way to judge the portability of a JTRS waveform is to port it to one of the target
platforms identified in the Contract Phase of the waveform acquisition process. Most waveforms will have
some portion of their software ported as part of the assessment process. In those cases where porting only
portions of the waveform is practical, efforts will be focused on those areas that appear through static
anaiysis to have the most potential for problems with portability. The PAT will compare those waveform
components ported during the assessment to the original version of the component for changes in
functionality and performance. This tactic uses the original development environment provided by the
waveform developer, and the development environment for the target platform, as well as use of the target
platform itself, when practical. Such a side-by-side comparison identifies any areas in which the
component’s performance changes due to the port.

423 Static Assessment

The static portion of the assessment process involves the review and assessment of the waveform source
code and provided documentation. In this process, the PAT derives an objective measurement of portability
from the comparison of certain waveform characteristics to applicable ideals, which results in the remainder
of the portability rating generated for the waveform. The PAT also reviews the documentation for the
presence of necessary information and its readability.

43 Assessment Resulfs

For the final, formal assessment, the PAT will develop a Waveform Portability Assessment Report
(WPAR) to document the findings of the assessment. It will include a discussion of portability issues
~ related to all target platforms identified for this waveform.

Assessments of interim drops will generate lists of findings that the PAT will convey to the developer for
corrective action. Refer to the WPAP [1] for details on how the waveform is assessed and how the final
portability rating is generated.

Waveform Portability Guidelines 32

NEDTE-PORT-GUIDE-1.2.1

28 Becember 2008

Appendix A

The following list includes acronyms and abbreviations used in this document.

ADC
AFEP
AGC
ANSI
API
ASIC
BFM
CDR
CE
CEA
CF
COMSEC
CORBA.
COTS
CSCI
CSMA
DAC
DID
DoD
DSL
DSP
DTD
FPGA
FQT
GPP
GPR
HDL
HDVL
IO

IA
ICWG
DD
IDE
IDL
IEC
IEEE
IF
INFOSEC
P

IR
1SO
ISS
TWPA
JPEO
JTEL

Acronym List

Analog to Digitai Converter

Application Environment Profile
Automatic Gain Control

American National Standards Institute
Application Program Interface
Application-Specific Integrated Circuit
Bus Functional Model

Critical Design Review

Computational Element

Criptographic Equipment Application
Core Framework

COMmunications SECurity

Common Object Request Broker Architecture
Commercial-off-the-Shelf

Computer Software Configuration Item
Carrier Sense Multiple Access

Dipital to Analog Converter

Data Item Description

Department of Defense

Domain Specific Language

Digital Signal Processor

Document Type Definition

Field Programmable Gate Array

Formal Qualification Test

General Purpose Processor

Government Purpose Rights

Hardware Description Language
Hardware Description and Verification Language
Input/Output

Information Assurance

Interface Control Working Group
Interface Design Description

Integrated Development Environment
Interface Definition Language
International Electrotechnical Commission
Institute of Electrical and Electronics Engineers
Intermediate Frequency -

INFOrmation SECurity

Internet Protocol or Intellectual Property
Information Repository

International Organization for Standardization
Instruction Set Simulators

Interim Waveform Portability Assessment
Joint Program Executive Office

JTRS Test and Evaluation Laboratory

Waveform Portability Guidelines

NEDTE-PORT-GUIDE-1.2.1

28 December 2009

JTR
JTRS
LNA
MDA
MDD
MHAL
MIPS
MOCB
MOF

NED T&E
OCL
OE
OMG
00
ORB
ORD
ORD
0S
OSCI
OTA
PAR
PAT
PDR
PIM
PLI
PM
PMO
POSIX
PPVT
PRF
PRR
PSL
PSM
QoS
RF
RFP
RTL
RTOS
SAD
SCA
SCD
SDD
SDp
SDR
SEPG
SoC
SOW
SPD
SPS

Joint Tactical Radio

Joint Tactical Radio System

Low Noise Amplifier

Model Driven Architecture

Model Driven Development

Modem Hardware Abstraction Layer
Million Instructions Per Second
MHAL On-Chip Bus

Meta-Object Facility

Network Enterprise Pomain
Network Enterprise Domain Test and Evaluation
Object Constraint Language
Operational Environment

Object Management Group
Object-Oriented

Object Request Broker

Operationsl Requirements Documentation
Operational Requirements Document
Operating System

Open SystemC Initiative

Over The Air

Place And Route

Portability Assessment Team
Preliminary Design Review
Platform Independent Model
Programmable Logic Interface
Project Manager

Program Management Office
Portable Operating System Interface
Post-Port Verification Test
PRoperties File

Porting Readiness Review

Property Specification Language
Platform Specific Model

Quality of Service

Radio Frequency

Request for Proposal

Register Transfer Level

Real-Time Operating System
Software Assembly Discriptor
Software Communications Architecture
Software Component Descriptor
Software Design Description
Software Development Plan
Software Defined Radio

Software Engineering Process Group
System on a Chip

Statement of Work

Software Package Descriptor
Software Product Specification

Waveform Portability Guidelines

A2

NEDTE-PORT-GUIDE-1.2.1

28 December 2009

SRR
SRS
STL
SVD
SysML
TBM
TBV
TDMA
TRANSEC
TRR
UML
UuD
VHDL
VHPI
VHSIC
WAL
WAT
WDS
WI
WPA
WPAP
WPAR
WPG
WPP
WPR
XMI
XML

Software Requirements Review
Software Requirements Specification
Standard Template Library

Software Version Description

Systems Modeling Language
Transactor-Based Modeling
Transactor-Based Verification

Time Division Multiple Access
TRANsmission SECurity

Test Readiness Review

Unified Modeling Language

Universally Unique IDentifier

VHSIC Hardware Description Language
VHDL API

Very High Speed Integrated Circuit
Waveform Acquisition Lead

‘Waveform Acquisition Team

Waveform Design Specification
Waveform Integrator

Waveform Portability Assessment
Waveform Portibility Assessment Procedures
Waveform Portability Assessment Report
Waveform Portability Guidelines
Waveform Porting Plan

‘Waveform Porting Report

XML Metadata Interchange

eXtensible Markup Language

Waveform Portability Guidelines

A-3

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Appendix B Specific Terminology
This section defines terms that are specific to the context of waveform portability and its assessment.

Application Program Interface (API) — A specification that details the way in which two independent
software components interact with one-another. An API describes how such a component may access a set
of functions on another component without requiring access to the source code of the functions, or requiring
a detailed understanding of the functions' internal workings.

Base Waveform — The base waveform is the original, non-ported waveform delivered by the waveform
developer. This waveform is stored in the JTRS IR.

Coupling — Coupling or dependency is the degree to which any program module relies on another module.
Loosely coupling interfaces in classes in C++, and functions in C minimizes the effects that changes in a
module have on those modules associated with it.

Destination — See Target.

Development Environment — An environment used by the waveform developer to serve as a host for the
waveform during the development process.

Environment — The collection of hardware, software, and peripheral devices that host an implementation
of the waveform. Typical environments include multiple processors, specialized input/output (I/0) devices,
an embedded cryptographic device, and SCA Operating Environment (RTOS, ORB, and CF).

Portability — The attribute of software that allows an application to run on two or more different
environments.

Ported Waveform — The waveform software as it exists in a form that can execute on the target platform
environment(s).

Porting — The act of moving a waveform by either rehosting or transporting from its original operating
environment to a new and different one while retaining the original functional capabilities.

Rehost/rehosting — The act of modifying the waveform software to achieve the documented capabilities,
requirements, and performance measures that drove the initial waveform design in the new platform
environment. Rehosting is the most common form of porting,

Source — The textual representation of a computer program in a human readable form

Target (also Target Platform, Target Environment) — The environment to which the waveform software
product is ported. Target platforms are fielded radios or functionally equivalent laboratory versions of those
radios that provide the WI with greater visibility into the internal workings of the system.

Transport — Physically moving the waveform software and data to a new environment in which it will
properly execute without change to either waveform or target platform source code.

Waveform Developer — An organization that creates the initial implementation of a waveform.

Waveform Integrator (WI) — An organization that ports a waveform to a specified platform. The WI may
be the Government, the original waveform developer, or a third party.

Waveform Portability Guidelines ' B-1

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Appendix C Acquisition Guidelines

Removed for public release.

Waveform Portability Guidelines C-1

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Appendix D Modeling

Complex distributed systems such as JTRS waveforms are difficult to develop without some form of
modeling involved. Many developers use modeling tools during the design process, but use of such tools
for implementation has yet to become commonplace. Still, the possibility of improving portability using
modeling tools to design and implement the waveform is significant. For this possibility to be realized fully,
tools must exist that provide the designers and developers with the capability of designing a PTM that can be
transformed by the tool into a PSM, and that can express the PIM in a manner that can be processed by
other tools for other target platforms. Fortunately, a number of software vendors have recognized this need,
and have created products and standards to fill this need. As more such tools are available, industries use of
them will become more widespread.

In recent years, various organizations have proposed a number of standards related to software modeling.
The Object Management Group (OMG), owner of the CORBA standard, has been particularly active in this
area. The OMG has proposed and promulgated most of the standards discussed in this appendix; however,
there are also other valuable standards, which often straddle the line between modeling techniques and
software development methodologies.

Note: Waveform developers relying on modeling tools must be careful to avoid anything that would lock
the PAT or subsequent Wls to the use of particular toolsets or techniques. This appendix is included to
provide the reader with information on the current state of software modeling tools and techniques. This
document does not endorse any particular tool or technique, nor does it require the use of such tools in the
development of JTRS waveforms.

D.1 References
The references listed below are specific to this appendix.

[D1] Cooley releases results of verification survey,
hitp://www.edn.com/index.asp?layout=blog&blog_id=1480000148&blog post id=810008681

[D2] Douglas C. Schmidt, Model-Driven Engineering, IEEE Computer, Vol. 39, No. 2, February
2006, pp. 41-47

[D3] MDA Presentations and Papers, http://www.omg.org/mda/presentations.htm

[D4] OMG Systems Modeling Language (SysML), OMG ptc/07-02-04, hitp://www.omg.org/cgi-
bin/doc?ptc/2007-02-04

[D5] Platform Independent Model (PIM) & Platform Specific Model (PSM) for Software Radio
Components (also referred to as UML Profile for Software Radio) v1.0, OMG formal/2007-03-
01, htip://www.omg.org/technology/documents/formal/swradio.htm

[D6] Open SystemC Language Reference Manual, IEEE 1666 SystemC Standard,
http://standards.ieee.org/petieee/1 666/mdex. html

[D7] SystemVerilog, IEEE Standard 1800-2005

[D8] Unified Modeling Langnage (UML), version 2.1.1,
http:/fwww.omg.org/technology/documents/formal/uml.htm

[D9] UML Diagram Interchange Specification: OMG formal/06-04-04, hitp://www.omg.orp/cgi-
bin/doc?formal/06-04-04

[D10] UML Profile for CORBA, v 1.0, OMG formal/02-04-01:
http://www.omg.org/technology/documents/formal/profile_corba.htm

Waveform Portability Guidelines D-1

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

[D11]UML Profile for Modeling QoS and Fault Tolerance Characteristics and Mechanisms v1.0,
OMG formal/06-05-02, http://www.omg org/technology/documents/formal/QoS_FT.htm

[D12] UML Profile for Schedulability, Performance and Time v1.1, OMG formal/2005-01-02,
http:/Awww.omg org/technology/documents/formal/schedulability.htm

[D13] UML Profile for System on a Chip (SoC), v 1.0.1, OMG formal/06-08-01,
http:/fwww.omeg.org/technology/documents/formal/profile soc.htm

[D14] XML Metadata Interchange (XMI), v2.1, OMG formal/05-09-01,
http://www.omg org/technology/documents/formal/xmi.htm

D.2 Modeling Tool Exchange Formats

Achieving portability of waveform modeling requires that the model not only be portable between target
platforms, but also that it is portable between modeling tools. This requires that such tools support a
common data exchange format for model information. The OMG has proposed the XML Metadata
Interchange (XMI) format for this purpose. XMI provides a mapping from Meta-Object Facility (MOF) to
XML, XMI provides rules by which a schema can be generated for any valid XMI-transmissible MOF-
based metamodel. In other words, XMI provides a standard way of interchanging models between MOF-
based tools, such as Unified Modeling Language (UML). Waveform developers should be aware that
recent versions of the XMI standard (2.0 and later) differ significantly from previous versions. To ensure
compatibility with the largest number of modeling tool vendors, developers should only consider tools that
support XMI 2.0 or later.

D.3 Modeling Languages

Unified Modeling Language (UML) has become the de facto standard modeling language in the software
industry. UML defines a graphical language for visualizing, specifying, constructing, and documenting the
artifacts of distributed object-oriented (OO) and component-based systems. A UML profile is a
specification that defines a Domain Specific Language (DSL) that does one or more of the following:

s Identifies a subset of the UML metamodel

e Specifies “well-formedness rules” beyond those specified by the identified subset of the
UML metamodel. “Well-formedness rule” is a term used in the normative UML metamodel
specification to describe a set of constraints written in UML’s Object Constraint Language
(OCL) that contribute to the definition of a metamodel element

» Specifies “standard elements” beyond those specified by the identified subset of the UML
metamodel. “Standard element” is a term used in the UML metamodel specification to
describe a standard instance of a UML stereotype, tagged value, or constraint

e Specifies elements, semantics, syntax, and constraints expressed in natural language, beyond
those specified by the identified subset of the UML metamaodel

* Specifies common model elements, expressed in terms of the profile

Applicable UML Profiles for JTRS are:

e The PIM & PSM for Software Radio Components (also referred to as the UML Profile for
Software Radio)

» The OMG Systems Modeling Language (SysML), which defines a new general-purpose
modeling language for systems engineering

e The UML Profile for CORBA, which defines a standard means for expressing the semantics
of CORBA IDL using UML notation

Waveform Portability Guidelines D-2

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

s The UML Profile for Modeling QoS and Fault-Tolerance Characteristics and Mechanisms,
which defines a set of UML extensions to represent Quality of Service and Fault-Tolerance
concepts

¢ The UML Profile for Schedulability, Performance, and Time, which defines standard
paradigms of use for modeling of time-, schedulability-, and performance-related aspects of
real-time systems in a standard way

¢ The UML Profile for System on a Chip (SoC), which defines a standard way to model system
level design, software algorithms, and hardware architecture, and can be transformed into
SystemC, SystemVerilog, and VHDL

D.4 Model Driven Development

Model Driven Development (MDD) and Architecture (MDA) are technologies proposed by the OMG as
the foundation of their software modeling strategy. The References section above lists papers describing
MDD and MDA. At the core of MDD are models that are used for the understanding, definition, design,
construction, implementation, and deployment of systems. The models can adopt different viewpoints, such
as platform and application perspectives, along with the degree to which they involve technology
information.

Model development has been performed in the past where models have been created at different system
development phases, such as requirements, design, and implementation. MDD differs from traditional
modeling in that models progress from design to PIM implementation, and then on to PSM implementation
through automatic transformation within the tool(s). In particular, design PIMs are living artifacts that are
not created once, and then forgotten about, in preference to code written in third-generation languages.
Thus, the designs and implementations remain synchronized. The more recently developed modeling tools
have the capability of automatically including the required infrastructure from applicable standards within
the model.

Some possible transformations for a waveform PIM into PSMs include:

e Source code generation
o Different source code generators such as C, C++, VHDL for waveform’s component
implementations
Complete executable test code generation
SCA XML files based upon SCA DTDs
Makefile compilation system for host or target RTOS.

The transformation capability of waveform PIM into PSMs will vary by tool vendor, such as:

* The types of PSMs generated, such as test code, language source code, SCA XML files, and
Makefile compilation system
o The quality of the PSMs
o The level of SCA fimctionality of the source code that is generated
o Quality and documentation of the generated code

While the waveform is undergoing transformation into a PSM, it should also be optimized for maximum
performance and efficiency on the target platform. Such optimization should allow for manual control of
parameters, such as memory layout, etc., in order to ensure repeatability. This optimization is likely to
reduce the portability of the ported waveform, but this is acceptable, as the ported waveform does not have
to undergo subsequent ports.

Waveform Portability Guidelines D-3

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

D.4.1 Modeling Types

Modeling for a waveform involves many different facets depending on the type of component under
development. Until recently, most modeling tools tended to focus on only one type of CE, requiring the
developer to use different tools for GPP, DSP, and FPGA development. This made it impossible to model
the entire system at one time. As newer tools have come onto the marketplace, that situation has improved,
allowing a developer to model the entire system at once, and move it through the various transformations as
a cohesive design, thus supporting an MDD approach. However, as stated earlier, the use of these newer
tools is not yet widespread.

b.4.1.1 Platform Independent Modeling

As stated in Section D.4, a PIM is a model that describes the definition of some element independent of a
specific technology. An example of PIM would be a waveform application model that captures the
application’s components along with the inter-component connections (QoS), and component definitions.
A component definition could consist of properties, supporting interfaces, subscriber and provider ports,
state behavior, and algorithmic behavior, A waveform PIM could also provide various use-case scenarios
depicting the design interaction of the application’s components along with any timing constraints. There
may be multiple PIMs created to capture the logical design of an element, each giving a different viewpoint
or perspective.

A properly detailed and documented PIM of the entire waveform may well be the most useful way to
describe its design as it concentrates a great deal of information into a form that can be understood by
engineers and manipulated by modeling tools. An engineer can use a properly developed PIM to model
adaptations to new platforms, as well as insertions of new features or technologies (through platform-
specific optimizations).

The primary benefit of a PIM is that an element definition is created once and remains consistent.
Likewise, a PIM can be applied to new/different technologies by transforming the element’s parts to the
new/different technology while still adhering to the element’s definition. In the JTRS program, for
instance, a waveform PIM can be used by future radio procurements that require that waveform’s
characteristics, thereby reducing cost and time to market. The intellectual property and value-added
capabilities provided by a contractor’s implementation for a particular radio constrain the transformation of
the waveform PIM into their waveform PSM for the radio’s physical communication channels.

As mentioned in Section D.3, SysML and UML Profiles, such as SoC, Software Radio, and QoS. would be
good candidates for developing platform and waveform PIMs. Other modeling for signal processing may
involve proprietary PIM formats, such as MatLab.

Modeling tools typically utilize proprietary technology for their implementation. For example, the
representation of UML intemally to an MDD tool is a vendor’s proprietary technology. To avoid vendor
lock-in, therefore, it is essential to be able to exchange models between toolsets using a standard format,
such as XML

D.4.1.2 Platform Specific Modeling

As stated in the introduction to D.4, a PSM is a model that describes the definition of some element
dependent on a specific technology, such as C++, XML, or CORBA. Examples of a SCA PSM would be a
waveform C+- detailed design using UML or a component’s XML descriptors. Within the MDD context,
the tool should automatically transform a PIM into a PSM. This transformation is extremely powerful as a
development aid. Tool-automated transformations allow for quick insertion of platform-specific
optimizations, new features, and new technologies in an environment that also supports testing of the
modifications to the model.

Waveform Portability Guidelines D-4

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

Most UML tools support modeling for specific third-generation languages, such as C/CH++ and Java, but the
UML language profile being used is not standardized. In the OMG, there are no standard UML profiles for
third-generation languages. A UML C++ model produced from tool vendor ‘A" may therefore be usable by
another UML tool vendor ‘B’, provided the UML C+ profile is not restrictive from license usage and
conforms to XMT, as stated in D.1. This situation will allow developers to review the C++ model using a
different UML tool, but be unable to generate code from the mode! since the UML tool may not have C++
generators for this type of UML profile. The adoption of standard UML profiles would resolve this
problem and promote model reuse across the JTRS program.

D.4.1.3 System / Algorithmic Level Modeling

Three standard IEEE HDLs are Verilog, VHDL, and SystemC. Verilog and VHDL are the oldest and have
been around since the 1980s. According to a survey article from EDN magazine, Verilog is more widely
used than VHDL. System(is the newest and least popular, although its use has been rising in the industry.
The EDN article also stated VIHIDL is used predorminantly by US military contractors and some European
compatrties.

IEEE 1800 SystemVerilog (http://www.systemverilog.org/) is the industry’s first unified hardware
description and verification language (HDVL) standard. SystemVerilog is a major extension of the
established IEEE 1364 Verilog language that is based upon C and Ada.

IEEE 1076 VHDL is based upon the Ada Language. There is currently an updated VHDL standard draft
approved by IEEE that was to have been completed in 2007, but is still under development. This draft
amends the 1076 2002 with VHDL API, known as VHPI, the other child standards (1164, 1076.2, 1076.3)
that addressed issues in 1076, and a subset of the Property Specification Language (PSL).

IEEE 1666 SystemC 2.1 is based upon the C+ language, which was initially developed by the Open
SystemC. The Open SystemC Initiative (OSCI) (bitp//www.systemec.org/} is an independent not-for-profit
organization composed of a broad range of companies, universities and individuals dedicated to supporting
and advancing SystemC as an open source standard for system-level design.

All HDLs have similar capabilities for describing hardware structure (e.g., module, channel, protocol) and
behavior (e.g., process, algorithm). They also have differences in the capabilities being offered for Systern,
Algorithmic, Register Transfer Level (RTL), Logic, and Gate. Modern HDLs for high-level design address
both hardware and software together.

Since there are multiple standard HDLs available, it is very important to be able capture the
system/subsystem or hardware design independent of a specific HDL. One should consider capturing the
system design based upon the OMG UML SoC. The UML SoC can be used to model hardware system
level design as a PIM independently from a HDL. The PIM then can be transformed into a HDL such as
SystemC or SysternVerilog. The OMG UML SoC specification did not mention VHDL, although since it
has similar concepts as SystemC and SystemVerilog, it should be possible to transform a UML SoC PIM
into VHDL.

In: the DSP domain, modeling tools, such as MatLab, provide both a highly productive system-level
verification environment and an efficient path to implementation for standard DSP processors. Built-in
abstractions liberate the designer from the strict modeling style guides that are required by general-purpose
languages, allowing the representation of large design objects with a high degree of efficiency.

D.4.1.4 Constraint Modeling

In addition to describing the relationships between model elements, it is often useful to apply constraints to
a model, for example, to specify properties, such QoS. There are various approaches to applying
constraints to MDD applications, such as Object Constraint Language (OCL), Third-Generation Languages,
and Prolog. '

Waveform Portability Guidelines D-5

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

OCL is a declarative language whose type constraints provide an alternative way of specifying constraints
that is often more practical and more conducive to better programming, e.g., simplifying iteration through
lists. In general, it is easy to write simple constraints using OCL. As soon as constraints get more complex,
however, OCL becomes hard to read and maintain.

Another approach is to write the constraints in a third-generation language, such as Java, C+H, or C#. For
simple constraints, developers end up writing a little bit more code than OCL. For complex constraints,
however, third-generation language code tends to be more readable than using OCL. Third-generation
languages also have good tool support. Third-generation languages are aiso good when developers need to
check non-traditional constraints that involve several model elements, need temporary variables, etc., which
are hard to do with the OCL model.

Yet another approach is to use a rule-based lanpuage, such as Prolog, and provide the constraints in a
model-independent way. This approach combines the benefits of the other two approaches. It is easier to
write some types of complex rules in Prolog (assuming Prolog expertise, of course). The main problem
with Prolog is that it is hard to integrate with conventional programming languages and tools.

D.4.2 Source Code Generation

Source code generation involves synthesizing language-specific artifacts for a model element. This has
typicaliy been done for CORBA IDL or C++ source code development, but some newer tools also include
test code and makefiles as well. Source code generation typically involves multiple modeling tools for
SCA component infrastructure, a component’s detailed design, and algorithms. Generated test code should
remain with the model and the generated source, and should be automatically updated along with them,

D.4.2.1 Ceoding Guidelines

Source code produced from modeling tools should support the coding gnidelines stated in the body of this
document. Code generator tools rarely provide documented code, but it would be a plus for code generators
to supply supplemental documentation (comments) to make it easier to understand the generated code. For
example, a tool may generate comments for the validation logic of a component’s properties or for a
component’s names involved in an assembly’s connection definition. Such a capability is mandatory in the
case of secure code generation. This could be in the form of a pass-through of comments from model to
source code.

D.4.2.2 Portability Guidelines

Source code produced from modeling tools should comply with the portability guidelines stated in the body
of this document. In particular, no vendor-specific headers should be used and the code should be RTOS-
and ORB-neufral (e.g., no vendor-specific macros or API calls). The component’s business logic
implementation should be a separate file from the SCA component CORBA servant code. This design
allows a component’s implementation to evolve independently from the component infrastructure.

D.4.2.3 Language Support

SCA waveform and platform components are typically written in C+- language for GPPs, C language for
DSPs, and VHDL for FPGAs. The more of these languages that a given tool supports, the more useful it is
likely to be for waveform modeling and development.

D.4.2.4 Design Practices/Patterns

The JTRS program involves many waveforms developed by different companies. These waveform designs
are rarely done the same way by different companies or even within the same company. MDD provides the
opportunity to develop a repository of model elements that are reusable across waveform and platform
components by applying the same design patterns. Such standardized components, if previously certified

Waveform Portability Guidelines D-6

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

by the appropriate evaluating entity, could also expedite subsequent recertifications when implemented as
parts of new applications. Design patterns have been used for some time at the OO programming level,
When utilizing MDD, however, design pattern reuse is at the component level, where new waveforms can
be rapidly built using existing design patterns [e.g., encoders, decoders, modulation, filters, Carrier Sense
Multiple Access (CSMA), Time Division Multiple Access (TDMA)].

The standardization of JTRS APIs and devices/services is a way of establishing design patterns at the
service component level, which is where maximum portability will occur. The design patterns within
waveforms are probably the next most beneficial level to investigate for possible standardization.

Another benefit of MDD is achieving a high level of consistency between component implementations,
This consistency is more easily achieved because the same transformation design pattern generators may be
used for each component generation. Enforcement is not left to developers, but is handled automatically by
MDD tools. The benefit of automated tool enforcement is that SCA. validation is performed once, since the
same transformation is used for all components, so validation time is spent more appropriately on the
waveform.

D.4.2.,5 Platform Specific Build Generation

Modeling tools vary in their support for creating makefile projects that can compile and link the generated
source code for different processing environments: RTOS, ORB, processor, and language. As mentioned
earlier, a waveform does not have the same implementation for all its components. It is, therefore,
important to have the capability to define different processing environments and associate these processing
environments to components. The automatic creation of makefile projects that work with these processing
environments, RTOS compilers, linkers, libraries, and ORB libraries and IDL compilers is beneficial in that
it relieves the developer of these tasks; however, the availability of such a capability is limited to only a few
currently available toolsets.

D.4.2.6 Document Generation

Design documentation can be viewed at two levels: the PIM and PSM. At the PIM level, the
documentation is analogous to the traditional preliminary design. The PIM captures the logical design for a
component or application, and all PSMs adhere to the PIM. The design information for a component PIM
can contain statechart behavior, algorithm behavior, relationships of the component’s ports along with
ports’ QoS and interfaces, and use-case design scenarios.

The design information for an application PIM can contain the assembly of the components along with use-
case design scenarios with timing information. The application PIM should be the complete application
definition, not just for certain types of components whose implementations are on a GPP.

The PSM level is analogous to the detailed design. A component PIM may have different PSMs, such as
C++, C, or VHDL. For each type of component PSM, the design pattern can capture once how the PIM is
transformed into a specific PSM. The design information for a component PSM can contain provider port
implementation and use case detailed design scenarios.

D.4.3 Test Management

As with Requirements Management for architectural requirements, test cases can be pre-built into a project
database. Along with test code for these test cases, a component’s definition will determine the number of
architectural test cases and test code for a given component design. So, for example, if a component has
two SCA wses ports (CF Port interface), the same set of uses port test cases are applied against the
component’s uses ports. The wuses test code may vary slightly in the area of connect or disconnect since the
types of connections are probably different.

Waveform Portability Guidelines D-7

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

D.4.4 Requirements Management

Requirements Management is nsually a manual effort of associating requirements to design and test cases,
but some of these activities can be automated depending on the type of modeling tool being used. For
architectural requirements like SCA [4], these requirements can be automatically associated with
component designs. As components are designed at the PIM level, and based upon the type of component
they are, the associated requirements can be automatically set in the requirements database. As the
component’s PIM designs are transformed into implementation design, the requirements flow down to the
implementation design at an operational level. Likewise, the requirements associated with a component’s
interfaces can automatically flow down to, and be associated with, the interfaces’ implementation design.

As an example, the requirements associated with an SCA CF::Resource interface can be automatically
associated with a waveform Resource PIM component. As the waveform resource PIM component is
transformed into C++ source code, the SCA CF::Resource interface requirements are associated with the
resource interfaces in the C+ source code. Each waveform Resource PIM component and its
implementation source code trace to the same SCA requirements database module, all of which can be
accomplished automatically without operator involvement within tools that conform to MDD.

D.4.5 Configuration Management

Configuration Management for MDD involves the configuration control of the model elements, but not
necessarily the artifacts generated from a model that have no need for operator intervention (such as
component’s subscriber--uses--port source code or entry point source code). The IDL compiler and
compiler switches that were used fo generate the code are important to know as stated in Section D.4.7
below. At a minimum, the MDD artifacts that must be controlled are the CORBA IDL files (model or
actual IDL), application model files, and an application’s implementation files containing the business
logic. :

D.4.6 Simuilation and Synthesis

Simulation of a design or implementation can occur from a model, from HDL, or from actual waveform
language code on a host SCA OE. In addition, simulation of a design can occur at multiple, different levels
such as system, subsystem, and component levels for hardware and/or software. Synthesis of a design is the
actual conversion of a high level physical description of a design into the primitive blocks and connections
found in silicon devices, such as FPGAs and Application-Specific Integrated Circuit devices (ASICs).

At this time, simulation at the model ievel is vendor proprietary, which means these types of models may
not be importable into another vendor’s simulation tool, o, if imported into another vendor’s simulation
tool, may not simulate, UML Executable, a UML profile, is currently in the submission process at the
OMG; however, UML Executable is over a year away from formal adoption. Until finalization and
adoption of the UML Executable standard, or a decision by the JPEO to standardize on a particular set of
tools, model-level simulation will not be portable between JTRS waveform development environments.

In the past, HDL simulation was mostly performed from a hardware perspective but with modem HDLs
(e.g., VHDL) simulation can now involve software. This is called co-verification of hardware and software
and can decrease the development time of a project by a significant amount. Co-verification usually
involves software nuinning on a processor that communicates with functions embedded in the hardware of
an FPGA or ASIC. A typical co-verification methodology is to write a software model of the hardware
functions in C or C++ and then run these with the software in order to do system level verification and
analysis. The bus level activity of the software models is then captured and converted into test vectors that
could be run in the hardware simulation environment. The functional description of the hardware is passed
to the hardware design group who then produce a synthesizable RTL version of the design. The test vectors

Waveform Portability Guidelines D-8

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

are used to verify that the RTL behaved the same as the software models used in the system analysis. This
methodology makes it difficult to quickly simulate changes to the software and the runtime of the software
is limited by the maximum size the static test vectors. Attempts were made to improve on this method by
creating Bus Functional Models (BFM) for the processor that could be run under hardware simulation.
This moves the simulation to a higher level of abstraction making it easier to simulate software changes;
thereby, decreasing the size of the stimulus needed for the simulation. The problem here is that the BFM is
only a model and may not behave in the exact way that the actual processor does. In addition, it is difficult
to convert the software functions into stimulus for the BFM. These factors increase design risk and
development time.

The introduction of Transactor-Based Modeling (TBM) has increased the efficiency of verifying hardware
and software together. A transactor is able to synchronize the data and commands passing between the
software running on a processor and the hardware running under simulation. The transactor is instantiated
in the hardware simulation environment and communicates with the hardware under test via an RTL
interface that models the processors physical I/0 and bus protocol. The transactor communicates with the
external software using software protocols passed through the simulator’s Programmable Logic Interface
(PLI}. Every simuiator vendor provides their own PLI but they all use a set of standard software calls. The
transactor has the ability to pause the simulation under program control of the software, thus keeping the
hardware and software in lockstep throughout the simulation run. This layer also takes care of inter-process
communications via shared memory between the software test process and the simulator. A shell program
coordinates starting the simulator and software test, and then takes care of test results, message logging, and
orderly simulation shutdown when errors occur. Transactor-Based Verification (TBV) is a powerful
method to achieve co-verification, but requires time and specialized knowledge to create the transactors and
to work with the PLI interface. Several companies provide tools and environments for TBV that ease the
development effort. These include the VERA testbench antomation product from Synopsys and the
QuickBench verification tool from Forte Design Systems. Transactor-based processing is currently the
most popular method used for co-verification.

Another method for co-verification (used mainly in ASIC work) is emulation. The emulator is a piece of
hardware that contains a processor, large amounts of memory and several large FPGASs tied together
through a mesh communication network. The RTL hardware design is mapped into the FPGAs and the
mesh network is used to tie the memory and FPGAs together, as if the design were on one large chip. This
enables the design to communicate with test software running on the embedded processor or with an
external processor via a standard interface. The emulated design runs at a fraction of the final ASIC speed
but it is stili many times faster than running on a simulator. This allows long software run times that detect
low level as well as system level issues. The drawbacks to emulation are the cost of the emulator hardware
and difficulty of mapping a complex ASIC design into several FPGAs.

There are many different simulators for simulating VHDL, SystemC, and SystemVerilog in the industry.
There shouid be consistent usage of one HDL in order to promote reuse and reduce costs across projects.
For the JTRS program, VHDL has so far been the HDL of choice, and it is often useful to simulate the
executable software on a host environment before execution on a target platform. Instruction Set
Simulators (ISS) and RTOS simulators are available that allow softiware to be verified on a workstation
using source level debuggers. This provides the benefit of verifying the functionality of some of the
waveform components along with their interactions.

Languages such as SystemnC and System Verilog allow engineers to design and verify at the system level
and create physical RTL code automatically for the hardware parts of the system. This is desirable because
it removes the step where the hardware engineer creates RTL from a specification of functions that have
already been verified in behavioral software at the system level. There are several “behavioral synthesis”
tools in existence, with some of the best-known being from Forte Design Systems and Celoxica. These
tools support SystemC and C/C-++ and generate RTL from the behavioral code. The user can then follow
the standard RTL to synthesis flow. A main concern with such tools is the quality of the machine-generated

Waveform Portability Guidelines D-9

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

RTL. Formal verification must be performed between the behavioral code and the RTL to ensure
equivalence. Without formal verification, there is no way of knowing that the design tested at the
behavioral level is the same as the design synthesized at the RTL level. Some verification tool vendors
claim to be able to verify designs where the synchronous elements are changed, e.g., pipelining or clocked
delay stages added. These advances may close the formal loop, but credible statistics are needed on the
quality of the RTL generated.

There is much work being done on formal verification and behavioral-to-RTL or direct behavioral-to-gates
compilation. The compiler-generated RTL is improving and the formal verification tools are becoming
more trustworthy. At this time, however, tools using C/C++/SystemC and System Verilog are best used for
architectural simulation, while human generated RTL is best used for physical design and functional
verification.

D.4.7 Development Environment

D.4.7.1 Host Development Environment Support

Before developers actually test a waveform, or deploy it onto a target platform, they should first build the
components on a host environment and verify application execution in that environment. For one user to
build an application that another engineer has developed, one needs (at 2 minimum) the following list of
artifacts:

o The makefile project that was used to build the application code
Environment variables that must be set up and used within the makefile project
e Identification of the target in the makefile project is used to build the application code that invokes
the other makes
» Source code to be compiled, linked, and tested. It is advisable to keep the source code separate
from the makefile project so other processing environments (VxWorks, Linux, etc.) can easily be
built.
Processing environment description documents the host operating system compiler switches used, along
with libraries, paths, linker switches, and so forth. An example of the type of information needed for a
Processing Environment Build Description is as follows:

e Source langnage (e.g., C, C++)
e Processor (x86, PowerPC, efc.)
RTOS build environment
RTOS name (e.g., VxWorks, LynxOS, Limux) along with version
Archiver command name used to create static libraries along with flags
BASE PATH added to the environment PATH variable
Compiler command, flags, libs, include paths — this is the compiler and/or linker command
name for compiling source and link object images
Linker command name, flags, path, and libraries
Object and/or shared extension suffix name for the object files (e.g,, “0”, “s0™")
¢ ORB environment
ORB name is the name of the CORBA ORB along with version
CORBA include and libs path — this is the file path for the CORBA COTS header files
CORBA link switches are switches for linking the CORBA object files
IDL compiler command is the IDL compiler command name along with flags

0 00O

[o3e)

O Q0 0o

Waveform Portability Guidelines D-10

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

D.4.7.2 Target Development Environment

As described for 2 host environment, the sarne information is needed for the target environment, and the
same source code used for host development should be compilable across RTOSs and ORBs where
compatible. Deliverable items could be the makefile project that is used to build this environment.
Additional information would be:

e The RTOS features that were used for the target platform. Most RTOS are configurable by an end-
user to the set of features or capabilities (e.g., web browser, communication protocols) that form
the RTOS for the specific platform.

e The ORB features that were used for the target platforrn. Most ORBs are configurable by an end-
user to the set of features or capabilities (e.g., types supported, usage of the any keyword, Real-
Time Support, compact/micro profiles) that form up the ORB for the specific platform.

e The board along with its Board Support Package.

D.4.7.3 Third Party Tools Integration

Common tooling frameworks help ease the task of integrating disparate development and simulation tools,
one such framework being Eclipse (http://www.eclipse.ore). Such frameworks allow several disparate tools
to be presented as a single, integrated toolset with a common user interface. Standardizing on a tools
framework for SDR development is beneficial as it allows the use of an IDE that spans the full SDR
development lifecycle. Waveform developers should investigate the tool sets available for the optimum
degree of integration.

In lien of integrations via a common tooling framework, one may choose more loosely coupled integrations.
These integrations, for example, are usually implemented via the adoption of a particular set of design
processes. These design processes define the tooling workflow and the handoff of artifacts from one tool to
another. These types of integrations will not have the same smooth flow of information from one tool to the
other as offered by the common, integrated frameworks.

It should also be noted that additional integration between modeling tools could be achieved when meta-
model definitions, a DSL, are shared between modeling tools. By using XMI as an exchange format, the
modeling tools can actually then exchange modeling files between each other. This allows particular
modeling tools to focus on aspects of the waveform design that the tools are designed to solve. For
example, UML modeling tools could exchange data with SCA design tools directly. Each tool would open
these files using editors specifically designed either to support either OO Analysis and Design, or SCA
component-based design. The two tools would manipulate the same object model allowing it to be
consistently maintained regardless of the tool used. When available, this style of integration is available
across modeling tools and should be taken advantage of as it reduces duplication and increases the accuracy
of modeling information during system design.

D.4.7.4 Radio Platform Integration

When choosing modeling tools for SCA development or when creating an SCA development IDE by the
integration of development tools, a number of radio platform integration issues should be also considered.
Among these are the download of XML and target component executables, target and model-level
debugging, OE monitoring, SCA Application monitoring, and deployment visualization.

Downloads of XML and target executables must use SCA compliant interfaces including the CF: : File,
CF::FileSystemand CF: : FileManager interfaces of the SCA to move file onto the target radio
hardware.

Support for debugging on the target radio platform is also very important during integration. Ata
minimum, the debugging facilities of RTOS vendors should be incorporated into a development IDE. If

Waveform Portability Guidelines D-11

NEDTE-PORT-GUIDE-1.2.1 28 December 2009

possible, the incorporation of model-level debugging facilities will further raise the level of abstraction and
aid developers in locating bugs, race conditions and throughput bottlenecks. Several modermn modeling
toois allow users to set breakpoints and watchpoints at the model level and then generate the instrumented
code required to support this type of debugging. Given the complexity of SCA-based systems and the
amount of automatic code generation produced by IDL compilers, UML tools, and SCA development tools,
this type of debugging is becoming more and more important to SCA software developers.

SCA software developers also need to be able to monitor the OE in order to deploy, tear down, and observe
the state of the SCA framework running across all the physical hardware in the radio, and such capabilities
should be part of the IDE. Along with these facilities, software developers of SCA-based systems also need
applications that monitor the deployment and execution of instantiated waveforms. Graphical versions of
these tools, which visually provide deployment and configuration information, should be preferred over
command-line text based systermns as textual representations tend to be complex and cumbersome to use.

Waveiorm Portability Guidelines D-12

